PMA Manufacturing Equipment

Overview and Selection

Alan Meitl, P.E. ECF, INC.

Topics

- Factors Affecting the Selection of Modifiers
- Typical Processes for Addition of Modifies
- Process Equipment Breakdown and Design Criteria
- General Equipment Discussion

Factors Affecting Selection of Modifiers

Chemistry then Physics

 Market and Competition Dictates Modifier

 Quantify Physical Properties of Both Asphalt and the Modifier

Resources
In House Technical
Formulators
Vendors

Chemistry

Asphalt Properties

- Chemical Makeup
- Consistency of Crude Slate from Supplier
- Polymer or Other Modifier Selection
 - Formulator
 - Vendor

Best Method of Combination

- Mixing Temperatures
- High Shear vs. Low Shear
- Linking Agents or Other Additive Additions

Physics

Heat

Agitation

Shake and Bake

Heat

Process Temperatures

- Raw Materials Storage Temperatures
 - Base AC Storage Temperatures 280 320°F
 - Polymer Storage Temperatures <100°F</p>
- Optimal Mixing Temperatures 360 400°F
- Finished Product Storage Temperatures 280 320°F

Heat Generating Equipment

- Hot Oil Heaters
- Boilers
- Direct Fire Heaters
- Heat Exchangers

Maintenance Heating Considerations

Tracing and Insulation

Agitation

- Physical Characteristics of Polymer Determine Best Means of Handling and Agitation
 - Shape
 - Bead, Pellet, Crumb, Block or Liquid
 - Density
 - Bulk Flow Characteristics
 - Melt Point
 - Dispersion Temperatures

Low Shear vs. High Shear

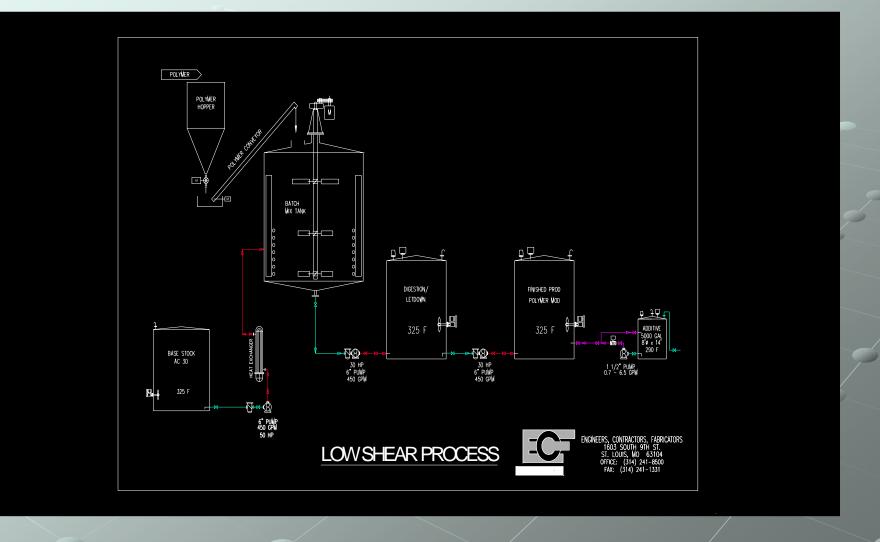
- Low Shear
 - Paddle and Blade Type Tanks Mixers
 - Re-Circulation Pumps
- High Shear
 - Colloidal Mills
 - Homogenizers

Design Considerations

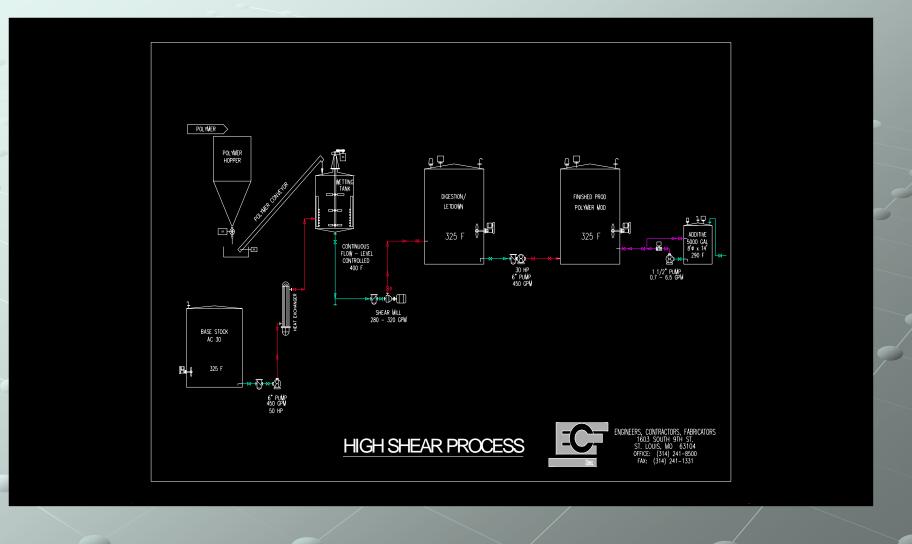
Flexibility

Operability

Safety


Cost

Basic Processes

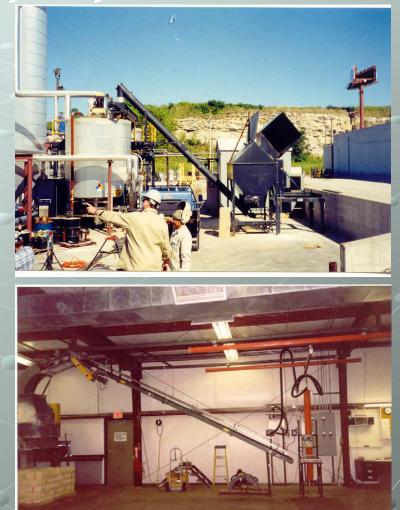

Low Shear

High Shear

Low Shear Flow Diagram

High Shear Flow Diagram

Bulk Polymer Storage Considerations


- Delivery Method
 - Box, Bag, Block or Bulk
 - Liquid
 - Truck or Rail
- Delivery Amounts
 - Pallet Floor Plan
 - Single or Double Stack
- Material Flow Considerations
- Climate Controlled? Indoor/Outdoor
- Exposure to Sunlight
- Local Fire Code Issue i.e. Sprinkler Systems
- Pallet, Cardboard and Bag Disposal
- Storage Space Usually Too Small!!!!!

Bulk Transfer System Considerations

- Based on Type of Deliver Container
 Box
 - Box Dumpers
 - Pre-fabricated
 - Fabricated on Site
 - Bags or Super Sacks
 Hoist Delivery Systems
 - Block Systems
 - **•**Air Systems and Conveyors

Delivery Systems

Hopper Design Considerations

Batch or Production Run Size

- Back Into Dimensions by Weight
- Polymer Density Varies
- 27 to 35 Pounds/Cubic Ft
- Usually Based on Number of Bags or Boxes

Clearance

- Material Handling Space Requirements
- Headroom
- Operator Safety and Production Requirements
- Ease of Maintenance and Cleaning
- Type of Delivery to Wetting or Mix Tank
- To Insure Complete Delivery to Process Walls Have to Be Greater Than 45°

Polymer Hoppers

Conveyor Type and Selection

Screw Conveyors

- Economical
- Easy to Maintain
- Can Plug

Disk Conveyors

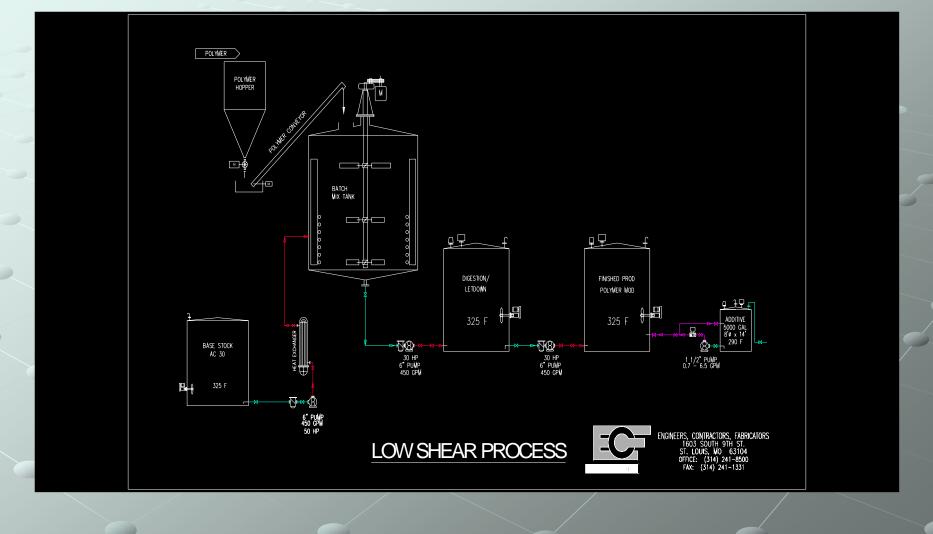
- Fits Into Tighter Spaces
- More Flexible Geometrics

Pneumatic Conveyors

- Can Convey Longer Distances
- Reliable
- Loud
- Requires Star Gears and Cyclones

Conveyors

Conveyors



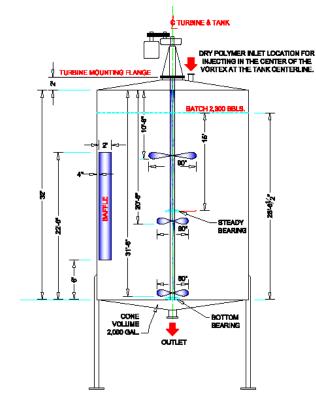
Low Shear Mix Tank Process

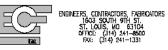
- Equipment
 - Large Scale Mix Tank
- Purpose
 - Introduce Polymer in a Large Scale Batch Tank and Disperse Using Low RPM Mixer
- Description
 - Normally Base AC is Pre-Heated to Mixing Temperature, Typically with a Day Tank or Heat Exchanger Then Pumped Into Mix Tank in a Pre-Determined Amount
 - Polymer is Introduced Into "Vortex" Created by Large In-Tank Mixer
 - Polymer is Drawn Into AC Down the Center Axis of the Tank and Flows Up the Sidewalls Insuring Consistent Dispersion
 - Polymer Concentrations are Variable But Usually Limited to a Maximum of 12%
 - Mixing Temperature Varies between 360 and 400°F
 - "Gentle" Mixing Until Polymer is Completely Dispersed

Low Shear Flow Diagram

Low Shear Process Considerations

- Up to 40,000 Gallon Batches
 - Over 40,000 Gallons Mixing Becomes a Logistical Problem.
- Batch Times are Chemistry Specific But Can Range From Six to 24 Hours
- Tank and Mixer Design Critical to Efficiency
 - Height and Width Ratios are Very Important
 - Creating a Vortex for Dispersion is Critical
 - Baffle Design and Placement
 - Mixer Blade Design is Tank Specific
 - Rafting is a Potential Result if Design is Not Correct
- Tank Heating Design and Placement
 - External Heating Pads
 - Helical Coils
 - Floors Banks


Mix Tanks



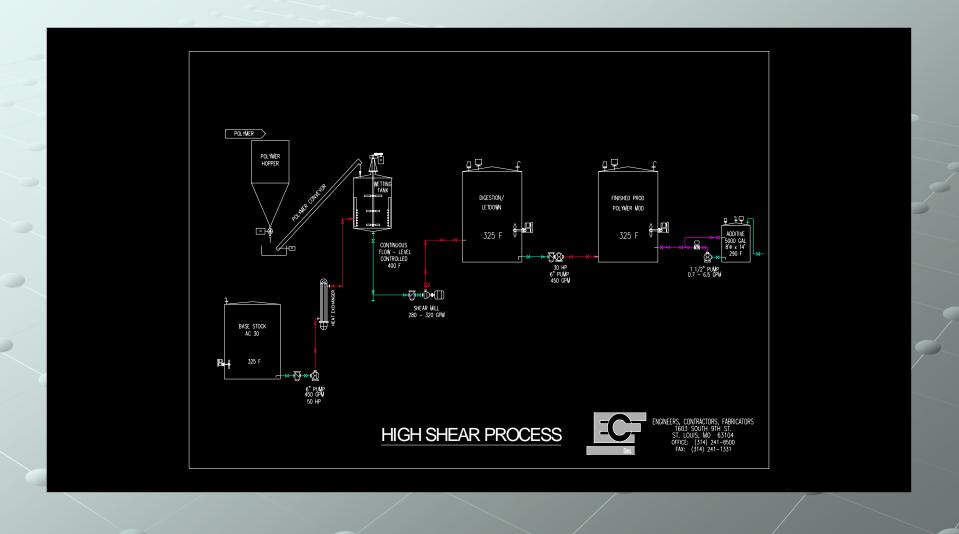
Mixer Design

NOTE:

1. TOP OF UPPER BAFFLE IB 15" BELOW BO" TURBINE BLADE. 2. UPPER TURBINE BLADE IB SUBMERGED 47". 3. LOWER TURBINE BLADE IB SUBMERGED ± 30". POLYMER MIX TANK

Mixers

Typical High Shear Process


Equipment

- Wetting Tank
- High Shear Mill or Homogenizer
- Digestion Tank

Purpose

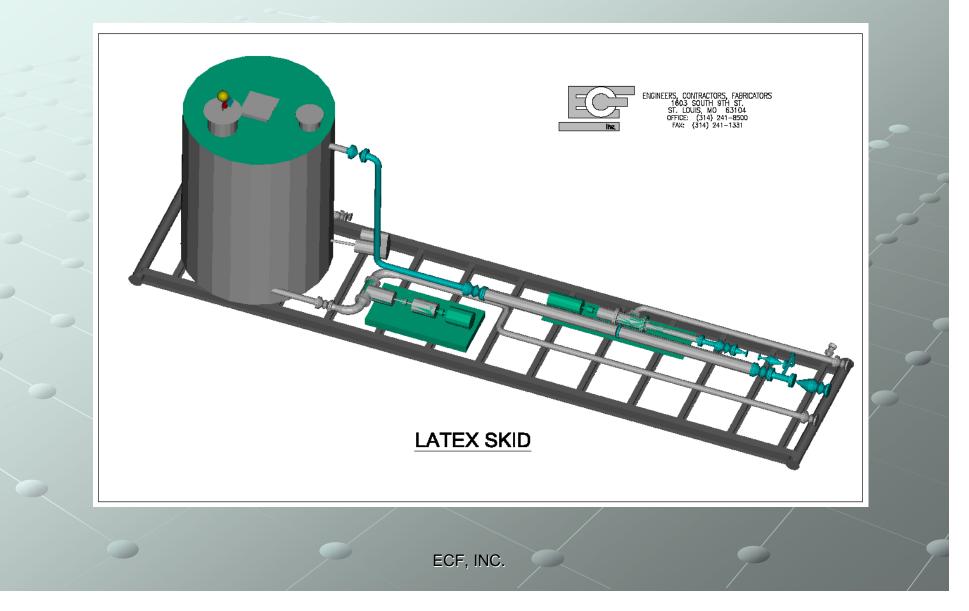
- Introduce Polymer to AC in a Smaller Tank and Shear into Smaller Particles Using a Mill, Making it easier and Quicker to Digest
- Description
 - AC is Pre-Heated in the Same Manner as the Batch Tank Using Either a Day Tank or Heat Exchanger Then it is Pumped Into Wetting Tank at a Controlled Rate Using a Variable Speed Drive Pump.
 - The Polymer is Introduced in the Same Manner as the Large Mix Tank But Using a Smaller Tank and Mixer
 - Both the AC and Polymer Streams Can be Controlled to Achieve a Homogeneous AC/Polymer Stream to the Mill. This Insures Concentration Strength and Decreases Digestion Time
 - This AC/Polymer Stream is Then Fed to the Mill or Homogenizer Which Shears the Polymer Particles Into Smaller Pieces Making Them Easier to Digest.

High Shear Flow Diagram

High Shear Process Considerations

- Batch Sizes Can Be Varied Based on Digestion or Finished Product Tank Sizing
- Production Rate Variable But Industry Rates are in the 270-300 gpm Range
- More Flexible Because Product Can Be Re-Circulated Through the Mill or Re-Milled if Necessary
- Usually More Expensive to Install
- Concentrations Up To 15%, Best Results are Around 10%
- Usually Less Time Required to Produce Same Size Batch

Wetting Tanks


Mills

Pre Fabricated Skids

Latex Skid

Digestion/Finished Product Tanks

- Good Agitation
 - Side Entry Mixers
 - Top Entry Mixers
 - Re-Circulation Lines
- Adequate Maintenance Heat
 - Proper Insulation
 - Coils Bare Pipe Preferred
 - **280-320°F**

Additives, Cross Liking Agents, Magic Dust

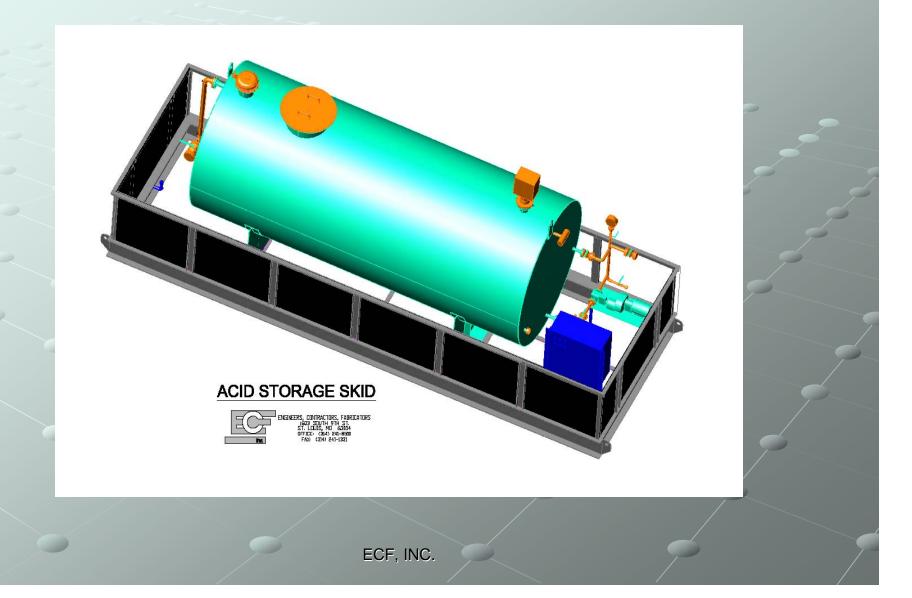
- Chemistry Dictates Where and How This Product is Added or Injected
- Typical Types of Linking Agents and Secondary Modifiers
 - Sulfur
 - Flake
 - Liquids Blend
 - Molten
 - Acid
 - Liquids
 - Other Modifiers

Sulfur Addition Systems

Flake or Pellet

- Often Conveyed Similar to Polymer Via Hoppers and Conveyors
- Oil Based
 - Small Injection Pumps in Re-Circulation Lines or Tank Addition
- Molten
 - Self Contained Skid Injection Systems
 - Definable Amounts Added to Re-Circulation or Directly Into Tank Top or Side.
- Safety Consideration
 - Presence of H2S and Need for H2S Safety Program

Molten Sulfur Skid


Sulfur Flake or Pellet Hopper

Acid Injection Systems

- Self Contained Skids Provided by Vendors
- Ground Up Systems
 - All 316L SS
 - Narrow Temperature Band for Use
 - Must Have a Controllable Heating System

Acid Injection Skid

General Equipment Recommendations

Line Sizes

- 8" Suctions, 6" Discharges
- Strainers
 - Duplex
- Pumps
 - Jacketed
- Heat Exchangers
- Tracing
- Insulation

