
AMAP 7th ANNUAL MEETING

NEW COMPACTION TECHNOLOGY FOR MODIFIED ASPHALTS CHUCK DEAHL BOMAG AMERICAS,INC.

INTELLIGENT COMPACTION

NEW INNOVATIONS IN COMPACTION EQUIPMENT

Asphalt Manager Intelligent Compaction

BOMAG INTELLIGENT COMPACTION

 A SYSTEM FOR MEASURING THE STIFFNESS OF HMA ON THE ROLLER
 A RECORDING OF THAT STIFFNESS MEASURMENT
 PROOF OF THE STIFFNESS OF THE HMA AS RELATED TO DENSITY
 PROVIDING INFORMATION FOR THE ROLLER TO MAKE DECISIONS

INTELLIGENT COMPACTION IS:

A SYSTEM FOR MEASURING THE STIFFNESS OF A GIVEN MATERIAL IN MEGA NEWTONS METERED SQUARED OR P.S.I. AND RECORDING THAT INFORMATION, TO BE UTILIZED AS A DOCUMENT OR PROOF OF ACHIEVING A GIVEN AMOUNT OF COMPACTION.THIS SYSTEM IS MOUNTED ON A MOBILE ROLLER TO RECORD THESE MEASUREMENTS AND THAN RELATE THESE MEASUREMENTS TO MEASURING DEVICES.

COMPACTION GOALS

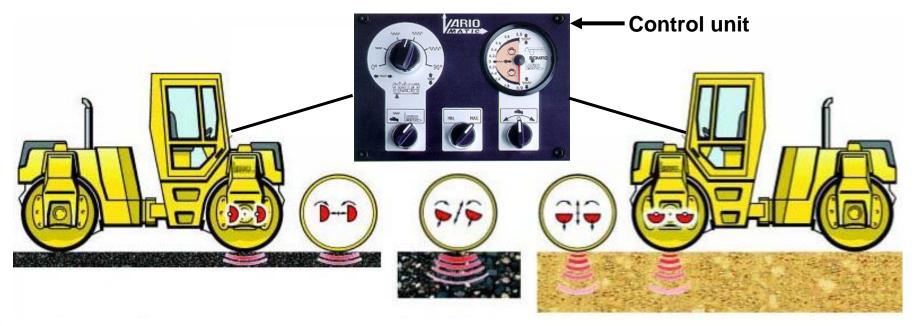
BOMAG

1. DENSITY 2. SMOOTHNESS 3. NOISE REDUCTION **4. BALANCED** PRODUCTION

8.4 Importance of Compaction

- Improve Mechanical Stability
- Improve Resistance to Permanent Deformation
- Reduce Moisture Penetration
- Improve Fatigue Resistance

Surface Covering Compaction Measurement


- 1983 Terrameter BTM 01 (OMEGA)
- 1993 Guidelines for Surface Covering Measurements National Research Association
- 1994 ZTVE / TP BF-StB 94, proof methods FDVK/ SCCC
- **1996 Compaction Management System BCM 03**
- **1998 VARIOCONTROL**
- 2001 Measuring device for evaluation of stiffness (Evib)
- 2004 Modular Measuring System with GPS support

History

BOMAG Compaction Technology

- **1996** Variomatic for asphalt rollers
- **1998** Variocontrol for soil rollers
- 2000 Evib (MN/m²)
- 2001 Asphalt Manager
- 2004 Research project of German DOT (BAST), Oct / Nov. 2004;

VARIOMATIC roller with directed vibration

low dynamic energy

Asphalt thin course

Asphalt base course

Gravel-sand

Compaction principle

static pressure and dynamic energy which is automatically adjusted to type of material, compactibility, layer thickness and base layer conditions.

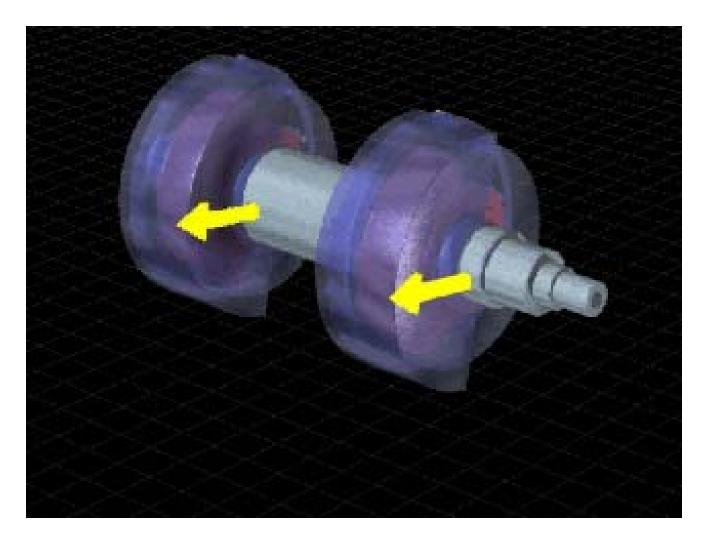
Applications: asphalt layers, granular bases and subbases.

high dynamic energy

Asphalt Manager


Worldwide proven design:

Several hundreds Tandem rollers


BOMAG Vibration Systems

BOMAG **Vibration Systems** Oscillation **Rotary exciter** directed

BOMAG Rotary Exciter

Non Directed Forces:

	Vibration	Oscillation	Variomatic
Principle	Rotary exciter with	2 rotary exciters with 2	2 rotary exciters with 2
	unbalanced weight	unbalanced weight	unbalanced weight
			counter rotating
Oscillation	non directed	directed	directed
	-	horizontally	horizontally to vertically
Amplitudes	up to 8	2 fixed amplitudes	automatic variation
	up to 1,3 mm	ca. 1,3 mm	0 - 0,9 mm
			horizontal/vertical
Frequencies	35 -70 Hz	33 - 42 Hz	35 - 50 Hz
Control system	manual	manual	automatic variation

Advantages vs. Rotary exciter:

- Better depth effect
- Excellent Asphalt surfaces
 - Eveness
 - Grip / roughness

Asphalt Manager

Benefits for contractors:

- Universal use on
 - Road base
 - Wearing course layers
 - Thin layers
- Higher compaction performance
- Uniform compaction, even on sub-bases with inhomogeneous stiffness
- Better eveness and more uniform surface structure
- Low tendency to scuffing

Compaction of 6 cm asphalt binder course 0/10, RN13 France Operating weight and compaction technique affect smoothness and eveness

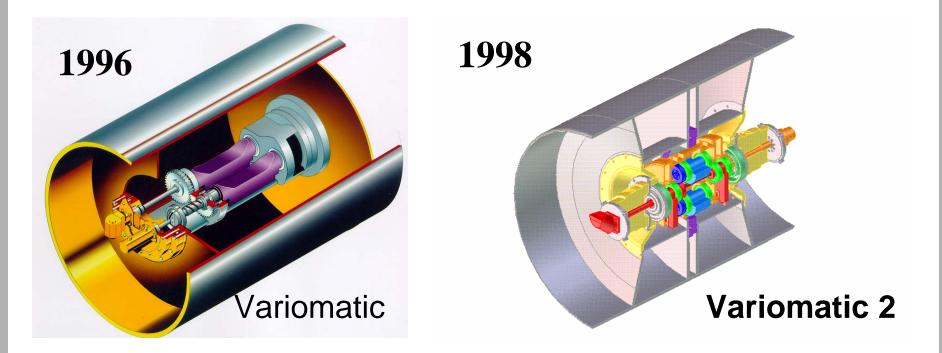
15 t tandem vibratory roller

8 passes

8 t BOMAG VARIOMATIC BW 151 AD

8 passes

Density and roughness measurement on asphalt binder layer

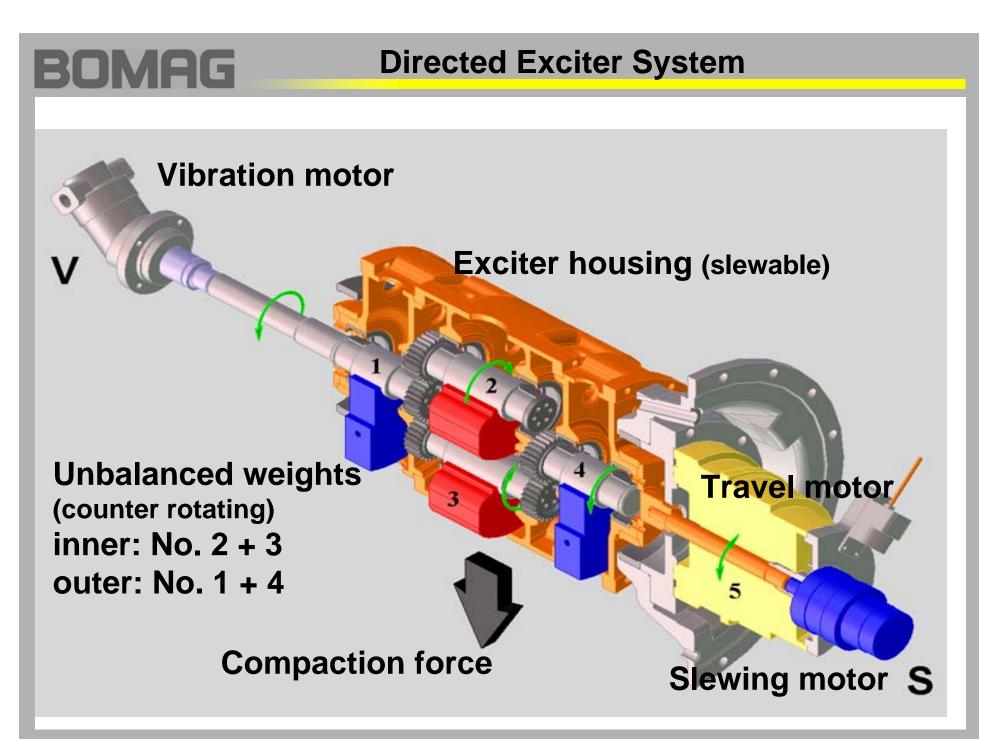

Punctual compaction measurement with portable isotope probe

Continuous compaction measurement with mobile isotope probe [1 measurement / 10 m]]

Comparison between conventional compaction concept and VARIOMATIC

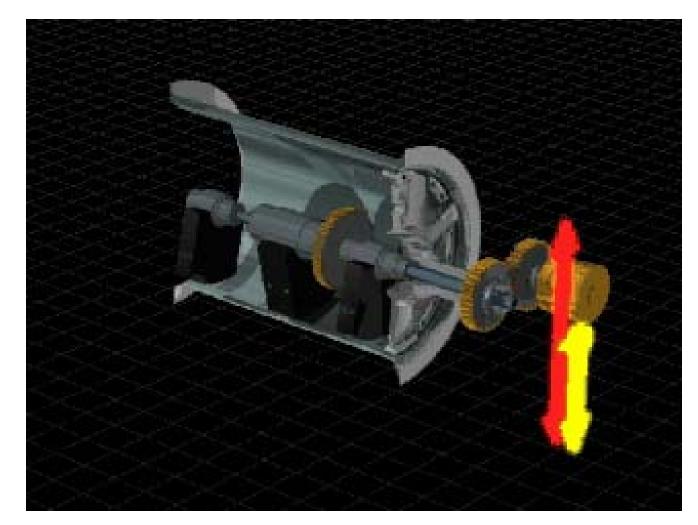
	Compaction						Roughness		
	Portable isotope probe		Mobile isotope probe [1 measurem./10 m]		Sand spot method				
	n	X1	σ	n	X1	σ	n	X2	σ
4 passes with 25 t rubber tire roller and 4 passes with 15 t tandem vibratory roller	14	92,5 %	1,22	59	94,6 %	1,29	12	0,46 mm	0,07
8 passes with BW 151 AD-2 VARIOMATIC	14	92,5 %	0,54	59	93,8 %	1,06	12	0,60 mm	0,05

n = number of measurements, X1 = mean value of achieved Gyrator test compaction value (93% Gyrator value ~ 98% Marshall value), X2 =mean value of characteristic roughness value

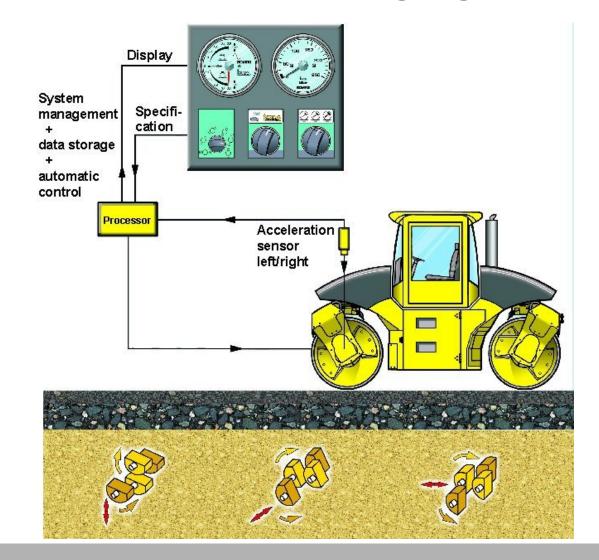


advanced, more powerful

also for split drums !


Latest developments of compaction technology

- **1996 Variomatic for asphalt rollers**
- **1998 Variocontrol for soil rollers**
- 2000 Evib (MN/m²)
- 2001 Asphalt Manager



BOMAG VARIOCONTROL

Force Direction Control: Infinite adjustment of exciter housing from horizontal to vertical.

Asphalt Manager with new measuring value E_{VIB} [MN/m²] and temperature gauge

Acceleration meters

Benefits for Operators:

No critical decisions required

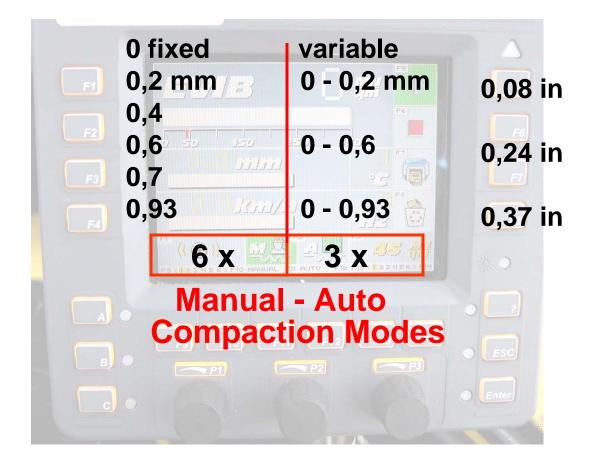
All operators achieve better results:

- good and uniform compaction

Continuous information on

- asphalt temperature
- compaction increase

The Operator


Asphalt Manager: Easy to understand

Asphaltmanager

Technical Data								
PARAMETERS	BW 141	/ 151 AD	BW 190 / 203 AD					
	A	M	AM					
Front: AM Rear: Std. Exciter								
Oper.weight kg	8.000	8.400	12.000	13.100				
Drum width in	59	66	79	84				
Amplitudesfrontmmrearmm	<mark>0,96</mark>	<mark>0,95</mark>	<mark>0,93</mark>	<mark>0,73</mark>				
	0,64 / 0,27	0,6 / 0,25	0,86 + 0,37	0,7 / 0, 3				
Frequencies front / rear Hz Centr. force	45	45	<mark>40 + 50</mark> / 46+57	<mark>40+50</mark> / 40+50				
frontkNrearkN	<u>160</u>	<u>168</u>	<mark>247 / <u>158</u></mark>	<mark>247 /158</mark>				
	80 / 34	80 / 34	167 / 109	<u>126 / 84</u>				

BOMAG Bomag Operational Panel

Bomag Operational Panel

PRINTER - Start

- Start Stor
- Stop
 - Print out
- Delete

Test procedere:

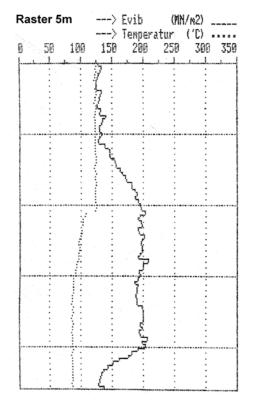
- Mark the track to be compacted
- "Manual operation mode" with
- Fixed amplitude
- Fixed working speed

Bomag Operational Panel

SETTINGS

- Escape
- Enter

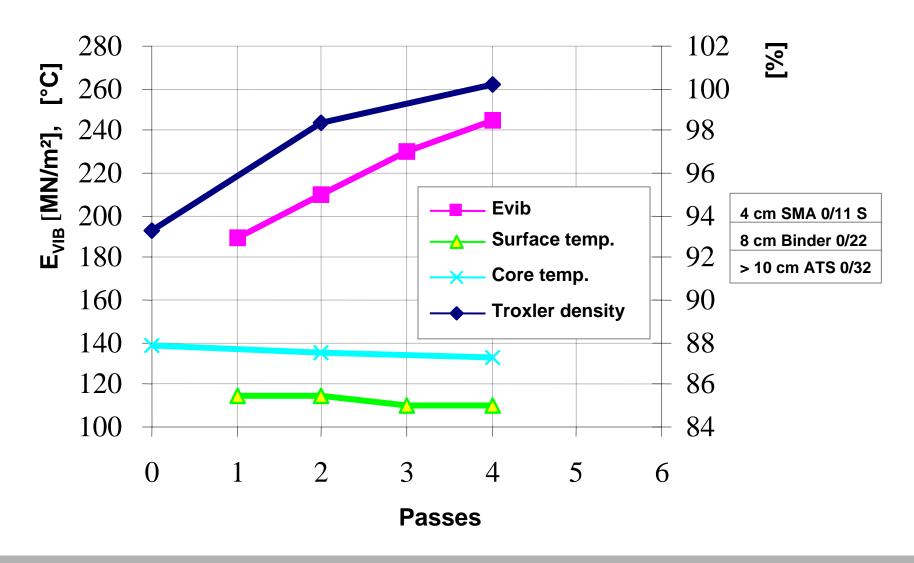
Printer

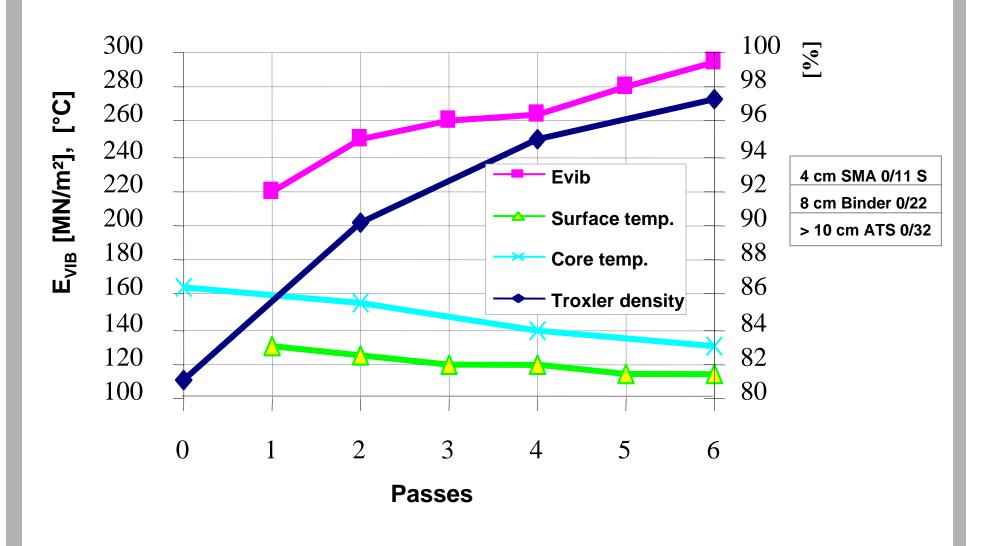


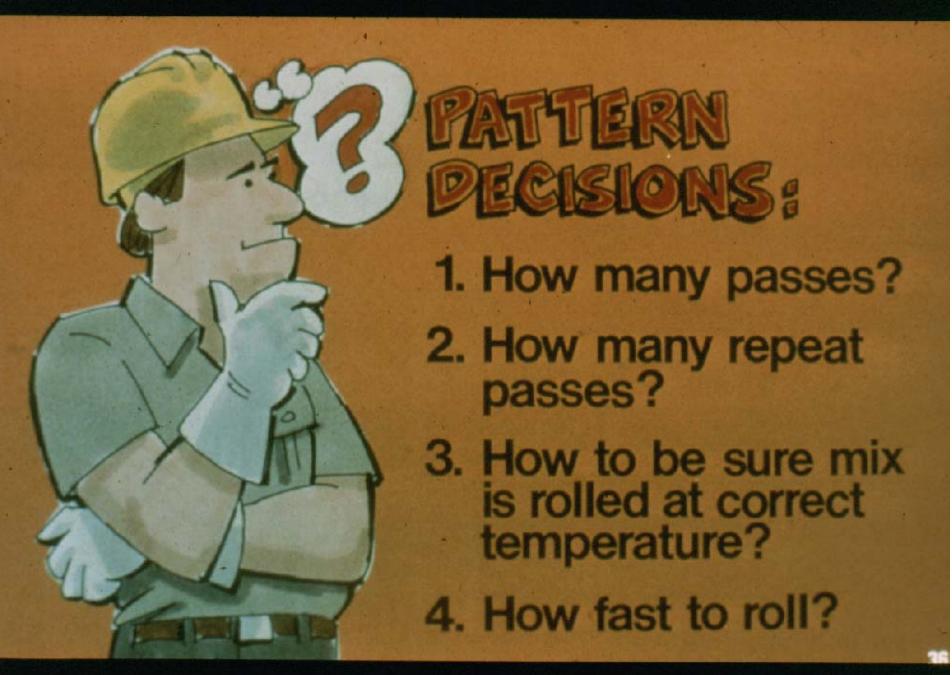
E_{VIB} - Printer

BOMAG ASPHALTMANAGER

UEBERGANG 1 VOR. BOMAG AM REV 6 DEU BW 174 AM


Einstellung : Hand / 0,40 mm							
Evib Max.	=	206	MN/m2				
Evib Min.	=	124	MN/m2				
Evib Mittelwert	=	168	MN/m2				
Frequenz	=	44,3	Hz				
Mittlere Fahrgeschw.	=	3,3	km/h				
Bahnlänge	=	22,9	m				


 E_{VIB} Max. / E_{VIB} Min.


- **E_{VIB}** Average
- Frequency
- **Average Speed**
- **Track length**
- **Temperature**

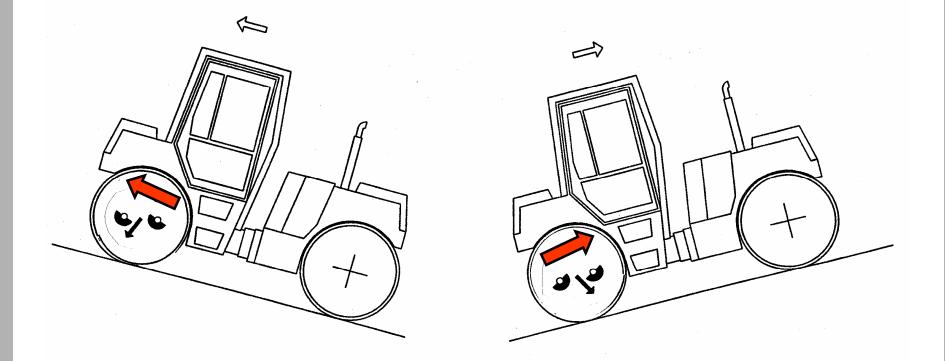
E_{VIB} and Density as function of passes; BW 174 AD Asphalt Manager, Automatic mode; Asphalt Base 0/32 CS B65, Nürnberg A3

E_{VIB} and Density as function of passes; BW 174 AD Asphalt Manager, Manual mode 4; Wearing course SMA 0/11S PmB45, Nürnberg A3

BOMAG ASPHALTMANAGER

PASS NO- 3 Rev. BOMAG AM Rev 3-0 ENG BW190 AD-4 AM						
Track len	uge peed value gth	$\begin{array}{rcrr} = & 2552 \\ = & 1209 \\ = & 1599 \\ = & 295' \\ = & 39' \\ = & 39' \\ = & 152 \end{array}$	25520 psi 12896 psi 15992 psi 2959 vpm 3,5 mph 152,1 ft			
Scale 16, 0 10	4ft> Evib > Temp 0 209	(psi*1 erature) 309	00) ('F) 400 50			
<u> </u>						
		. :	:			
	5					
	Č,	:	:			
	5	-				
	·····					
	<u>∖</u>	-				
	2					
	1	;	:			
	- L 🔅	÷	-			
	{					
	10	:	:			
	: <u>(</u>)	-				
	<u>۱</u>					
	\$/ ·	÷				
	- 70.E					
	: ነር	:	:			
	21	÷	-			
	: })					
	5	:				
	- <u>5</u> -	-	÷			
	- 1	:	:			
	1	:	:			
	ς.					
	·};·	· · · · · · · · · · · · · · · · · · ·				
	ي کر ا		-			
	. []					
	۲ ۰ , ۲	:	:			
	5 5	:				
	·····					
	{	:	:			
	- \					
	ا ک	:	:			
	* 5					
	5 8					
:	2 0		-			
	7 %	:	:			
	64	:				
:		:				
	7					
1 :	<u>ا ا</u>		-			
:	کر <u>:</u> :	:				
1 :	<u>۲</u>		-			
	- 7C					
· ·						
			·····			

Advantages:


- Immediate determination of dynamic stiffness in MN/m² (E_{VIB})
- E_{VIB} can be correlated with the increase of compaction
- E_{VIB} is widely independent from roller parameters
- E_{VIB} printouts for area covering compaction control

In Development:

- Target E_{VIB} values to be pre-selectable
- "Ready" indication if target value is achieved (red light)
- "Ready" indication if no further compaction is possible (red light)

VARIOMATIC 2

Further advantages: better gradability- less shoving effect

Automatic force adaption with travel direction

Evib (MN/m²) Vibration modulus

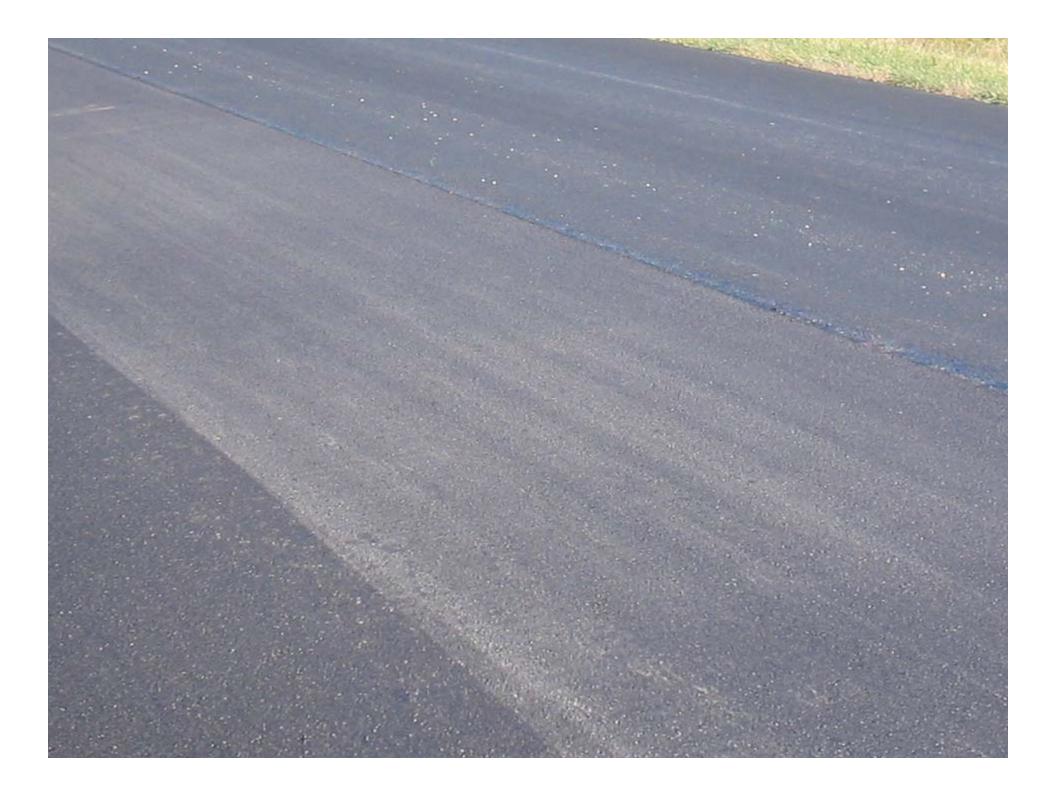
Equivalent for dynamic Stiffness;

Directly picked up by the roller;

Physical value for compaction increase on asphalt.

Benefits for Contractors:

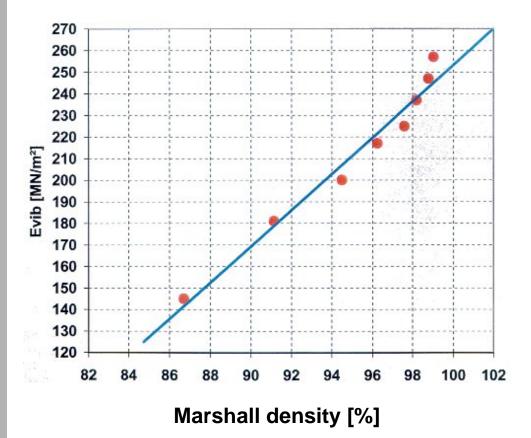
Investment for Profit


Compaction

- Uniform and predictable results whilst rolling
- Avoids under / overcompaction
- Better eveness and roughness
- Eliminates drum bouncing

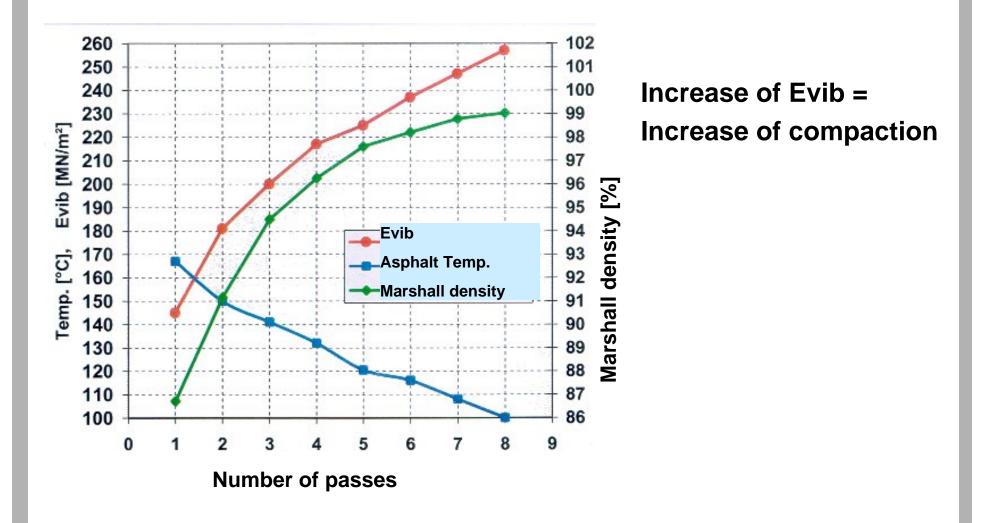
Economical and quality aspects

- More efficient roller utilisation with fewer passes
- Reduced shock loads in sensitive environment e.g. buildings, bridges
- Area coverage method



BOMAG E_{VIB} [MN/m²] vs. Marshall density [%]

Compaction test on asphalt wearing course (stone mastix asphalt)


Perfect correlation:

Evib + Marshall density

Adequate conditions:

- Temperature between (170-120 °C)
- Asphalt layer on solid ground

Compaction test on asphalt wearing course (stone mastix asphalt)

Application

Comfort + Quality:

Compaction of joints hot against cold

- avoids shock loads
- no bouncing
- better eveness

BOMAApplication

Leipzig:

"Augustusplatz"

Compaction on a parking roof top;

Alternatives:

15 t static roller - 15 cm layers With BVM

- 40 cm layers

Application

Avoids shock loads on bridges and near buildings

Depth control via force adjustment

- 3 automatic control ranges
- 6 manual force directions (fixed)

Bomag

FEATURES

BENEFITS

Modular Design Principle: Less Expenses for Warehousing, Training, and Logistics;

- Operator Platform
- Central Electric System
- Travel- / Vibration Pumps and Motors
- Support Legs

Surface Quality

Perfect Results:

- Roughness
- Eveness

Bomag

Application soil compaction

Support for compaction works and measuring paths on sub-grade, frost blanket layers and non-bonded bearing layers: the E_{VIB} value increases with increasing compaction. Weak spots are localized.

Application asphalt compaction

Support for compaction works on asphalt layers. If compaction is performed within a narrow temperature range (e.g. 120° – 150°C) and the sub base is of sufficient stability, E_{VIB} will show the increase in compaction. A direct statement on the density is only possible after performing comparison measurements with an isotope probe (Troxler). Compaction force and depth effect can be adapted to the layer to be compacted and to the substrate (see matrix of recommended applications).

Condition of the	Setting	Asphalt bearing course	Asphal	t binder	Asphalt pavement	
substrate	9		Easy to compact	Difficult to compact	Asphalt concrete	Stone mastic
evenly firm (stable)	Automatic: Force level	3	2-3	3	2	3
	alternative: Manual*: Position	6-3	4-3	5-3	4-2	4-2
	Compaction temperature	> 80°C	> 80°C	> 100°C	> 100°C	> 120°C
yielding (soft)	Automatic: Force level	2	1-2	2	1	2
	alternative: Manual*: Position	4-2	3-2	3-2	2-1	2-1
	Compaction temperature	> 80°C	> 80°C	> 100°C	> 100°C	> 120°C
Layers on bridges	Automatic: Force level	1-2	1-2	1-2	1	1-2
	alternative: Manual*: Position	3-2	2-1	2-1	2-1	2-1
	Compaction temperature	> 80°C	> 80°C	> 100°C	> 100°C	> 120°C

Temperature specifications related to the asphalt surface, * in manual mode start with higher level first, and reduce after

CONCISE OPERATING INSTRUCTIONS ASPHALT MANAGER

Asphalt Manager

Display, direction of vibrations

EVIB display

Temperature gauge

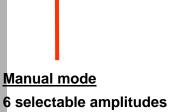
Emergency switch

③ Display of vibration direction and amplitude

shows the direction of drum vibration and the size of the vertical amplitude

EVIB display EVIB display

 E_{VIB} shows the dynamic stiffness of the material to be compacted in in MN/m^2


- E_{VIB} responds to changes in density. With increasing density the asphalt becomes firmer (stiffer). The E_{VIB} value increases.
- E_{VIB} responds to temperature changes. With dropping temperature the asphalt becomes firmer (stiffer), even if the end of compaction is not yet reached . E_{VIB} increases with decreasing temperature.
- E_{VIB} responds to deviations in the stiffness of the substrate (base layer). On a soft substrate and with a pre-selected high force level the E_{VIB} may remain low.

① <u>Temperature gauge</u>

The temperature is permanently detected as asphalt surface temperature. Depending on layer thickness, ambient temperature and wind force the mix temperature inside the core of the layer may be up to 40°C higher. At a surface temperature of 80°C compaction should be completed.

Emergency switch

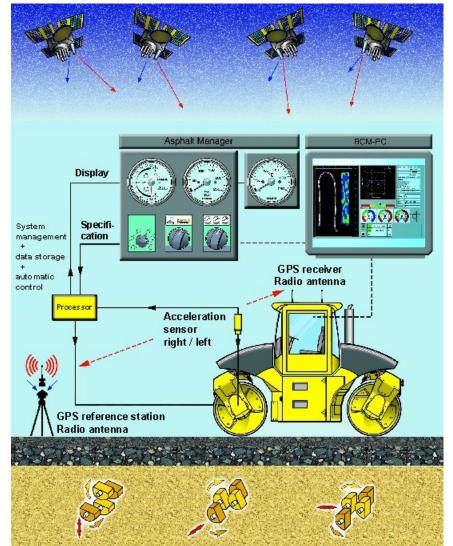
In case of an electronics failure the emergency switch enables the selection of two vibration directions: horizontal (left) or vertical (right)

each with constant

direction of vibration

Selector switch

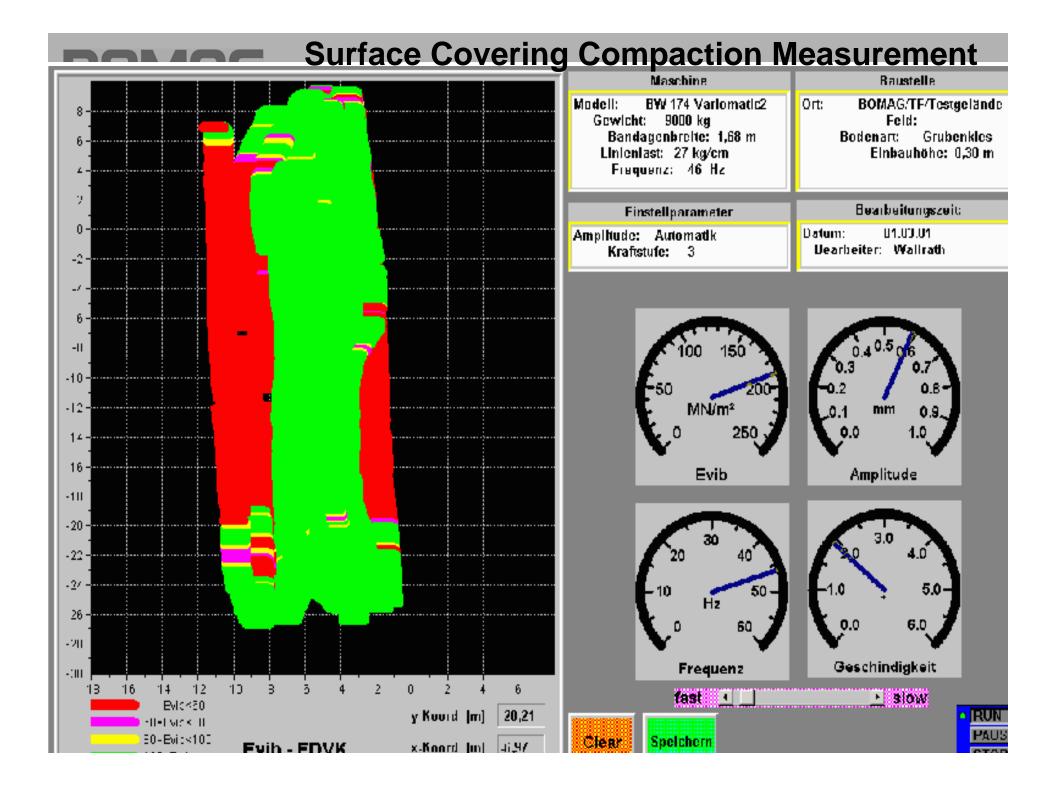
Operating mode


Manual/Automatic

Automatic mode 3 selectable force ranges with amplitude control, limited to compaction force and depth effect

Slide 62

Current Developments


Asphalt Manager + BOMAG GPS System

- Surface covering compaction control on asphalt layers
- GPS receiver
- GPS reference station
- Roller PC for data managing and graphical representation of roller position and stiffness values
- Position accuracy: better than 10 cm
- CAD based evaluation program

Roller positioning with total station (Geodimeter) for continuous compaction control on asphalt layers

BOMAG Determination of roller positions with GPS

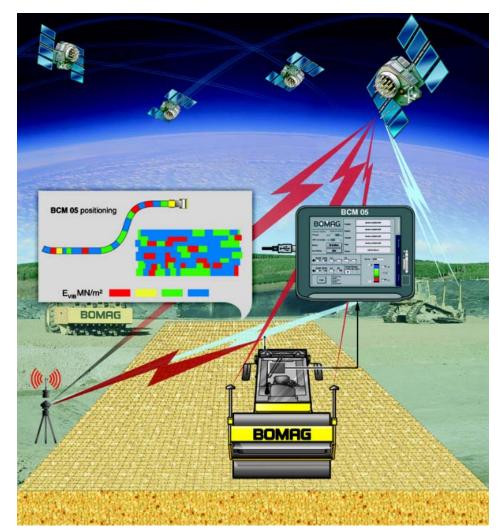
Reference station on the job site

High accuracy: up to 5 cm

GPS Reference service with reference satellite

Accuracy: up to 100 cm

- > OmniSTAR (world wide) ~ 1500,- Euro annual charge
- > EGNOS (Europe, not yet in operation) free of charge
- > WAAS (North America)


Local Reference network (reference service)

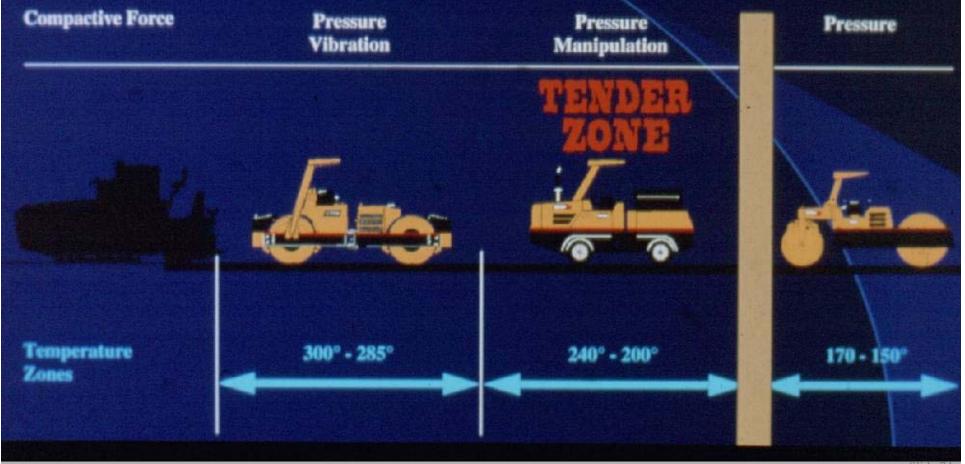
High accuracy : up to 5cm (depending on service)

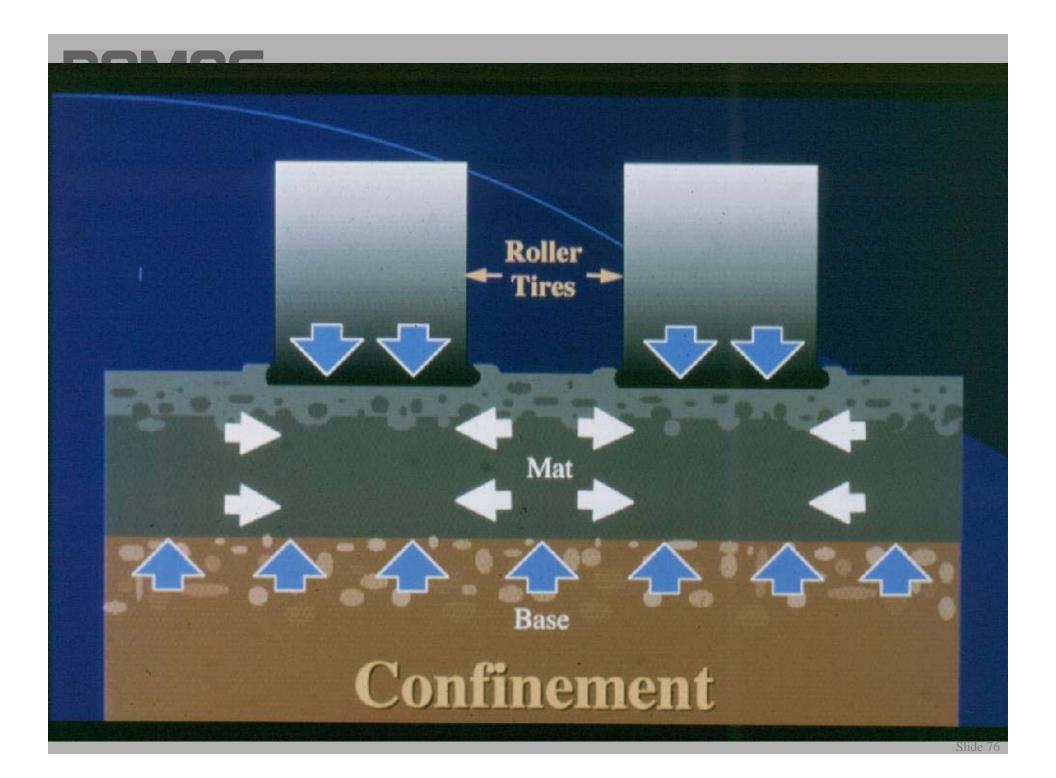
> Ascos (since 2001, Ruhrgas / Germany,

(only available in Rhine Area)

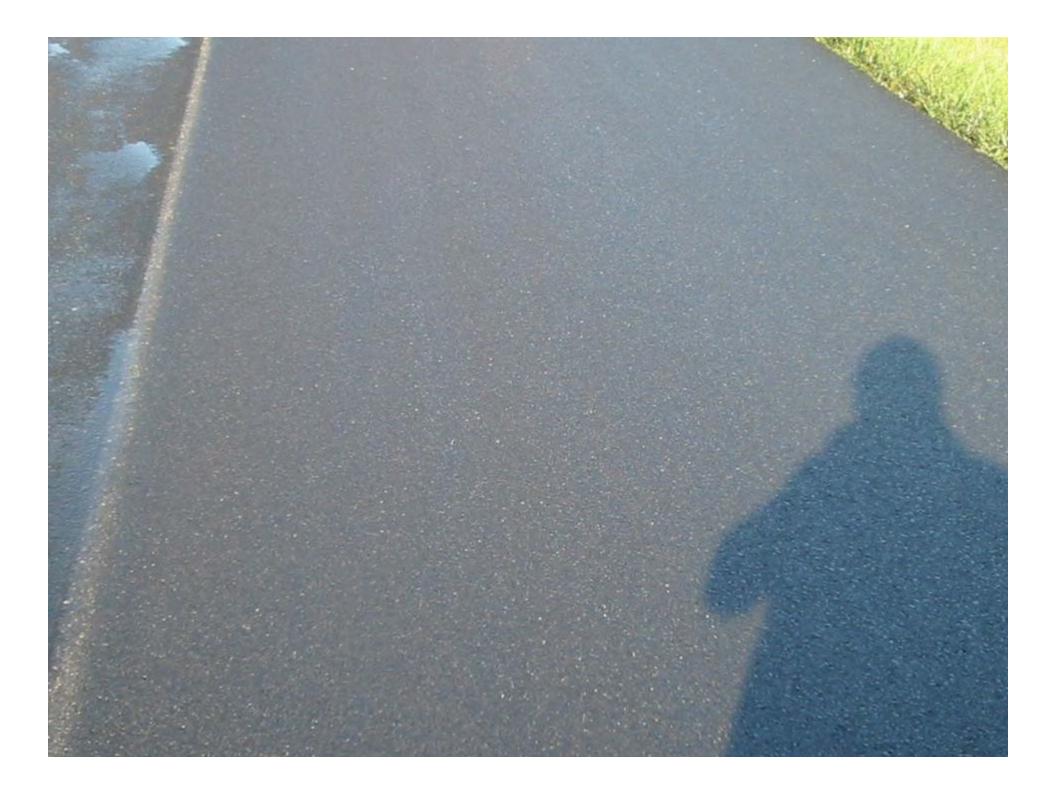
BOMAG GPS / positioning with Reference Station

- Two GPS Antenna
- Reference station (Trimble)
- High accuracy (5cm)
- RTK (real time)
- BCM 05 positioning software





Compaction of Superpave Mixes



CONCLUSIONS:

POLYMER MODIFIED HOT MIX ASPHALT MIXES CAN BE: COMPACTED WITH VIBRATORY ROLLERS AT TEMPERATURES FROM 280 F- 300 F; WITH WARM MIX MODIFICATION COMPACTION TEMPERATURES CAN BE REDUCED.

ROLLED WITH PNEUMATIC TIRED ROLLERS FROM 180 F-200 F WITH THE USE OF RELIABLE RELEASE AGENTS.

DAILY MAINTAINENCE OF RADIATORS ON PAVERS AND ROLLERS IS REQUIRED WHEN USING POLYMER MODIFIED MIXES.

QUESTIONS???? QUESTIONS????