"Best Management Practices To Minimize Emissions During HMA Construction"

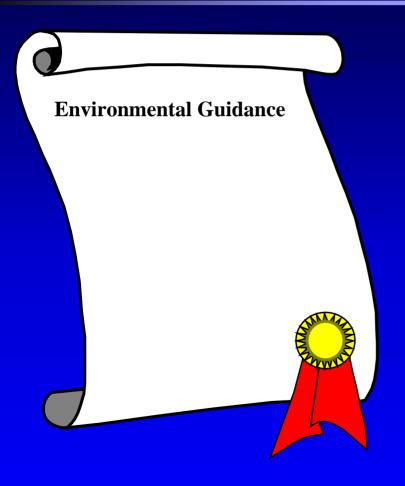
AMAP 5th Annual Meeting Nashville, TN February 10, 2004

Why Did We Need This Document?

Superpave – new technology indirectly led to problems Emission episodes around the country Asphalt fumes are an irritant - worker

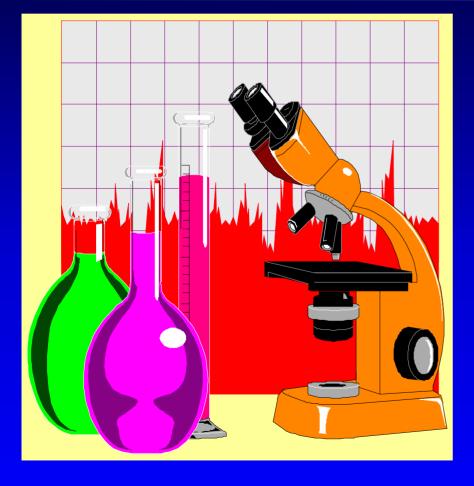
complaints

Document Origin



Asphalt Paving Environmental Council (APEC)

- National Asphalt Pavement Association
- Asphalt Institute
- State Asphalt Pavement Associations

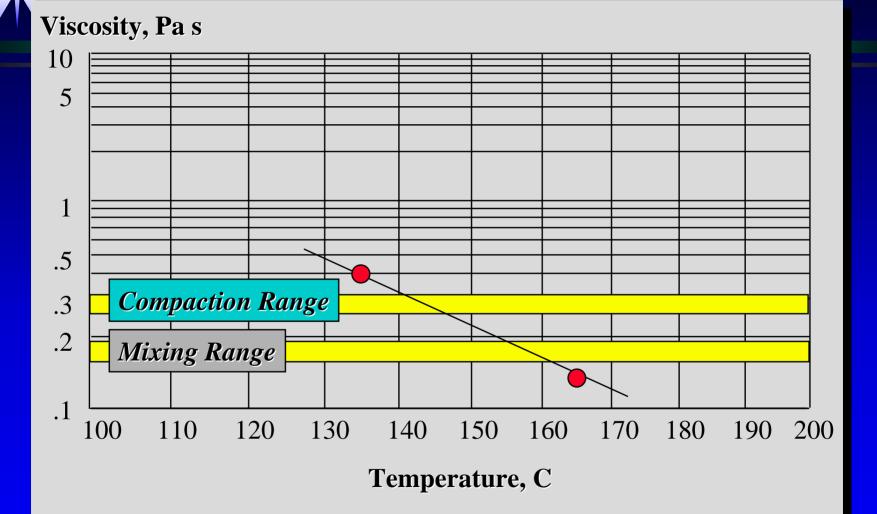

Existing Guide Documents

Australian APA **Environmental Guide** Specs for PMA > OHMPA Environmental **Practices Guide** Written to help HMA plants be good neighbors and deal with environmental problems

SUPERPAVE System

Performance Graded Asphalts

- Grades for specific climatic and traffic conditions
- New grades for both suppliers and users



Laboratory Temperatures

Rotational Viscometer (Brookfield) Viscosity at 135°C and 165°C ➤ Viscosity @ 135°C < 3.0 Pa·s</p> Equi-viscous Lab Mixing and **Compaction Temps** Does not work for PMA - use suppliers' recommendations Not for field temperatures

PG Asphalt Temperatures

Laboratory Vs Field Temperatures

EX: PG 70-22 Lab Mix Temp: 333°F -343°F Lab Comp Temp: 311°F -320°F Best Practices **Recommendation Field Mix Temperature: 280°F - 330°F** Field Compaction Temp determined by Test Strip

SUPERPAVE Compaction

SUPERPAVE coarse mixes may be hard to compact Poor density may mean permeability -**FL** experience DOTs are focused on density Contractors are focused on density

SUPERPAVE Compaction

- Pavement designers usually have little SUPERPAVE training
 Maximum Size ve
- Maximum Size vs Nominal Maximum Size
- Lift thickness less than 3 X NMAS makes density very hard to achieve
- Poor designs added to density problems

SUPERPAVE Compaction

- Contractors want to extend compaction time - Higher Mix Temperatures
- Higher Temperatures should be LAST RESORT
- Use more rollers three or four
- Keep front roller close to paver
- Watch the Tender Zone
- Use an Infrared Device

Superpave Caused Higher Mix Temperatures

What's Wrong With Higher Mix Temperatures?

Each 10°F Increase in Temperature <u>Doubles the Amount</u> of Fumes

From 310°F to 350°F
2x2x2x2 = <u>16 Times</u>

the Fume Amount

High Mix Temperature Consequences

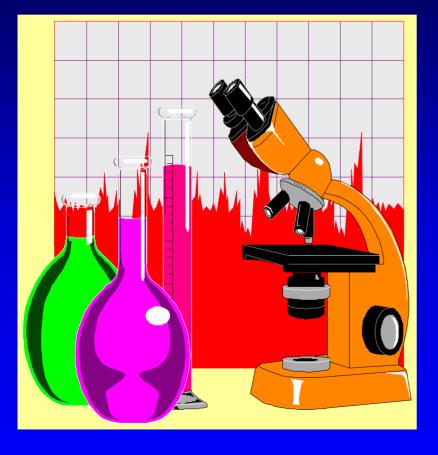
Excessive aging during construction Excessive fumes Tender mix Asphalt drain-down -**SMA and OGFC** mixes

Very Small Quantity of Asphalt Causing Fumes

- Normal 8 hour paving day
 1500 tons of HMA at
 - proper temperature
- AC 5% = 75 tons AC
- Fumes for that day are caused by 21 grams of asphalt material
- One tablespoon of material from 75 tons of AC creates the fumes

Lab Temperatures as a Starting Point?

EXAMPLE - PG 70-22 Lab Mix Temp: 333°F -343°F DOT allowed contractor to select mix temp > Target +/- 25°F Contractor selected Job Mix Range: 345°F - 395°F Temperature Lowered to 315°F - Improved Density and Ride


Research Efforts are Underway

NCHRP 9-10 - Bahia Zero **Shear Viscosity in Brookfield** Univ. of Texas - Kennedy **Shear Rate of Mix in Gyratory Compactor** NCAT - Paddle Mixer Torque

Research Efforts are Underway

NCAT Smoke Emission Potential (SEP) Test

- Oven gradually increases temperature
 measures opacity and mass loss vs. time and temperature
- Possibly may identify safe maximum mixing temperature for a given binder

Interim Guidelines

 Field Mix Temp Chart
Asphalt Institute Survey

> Listed by Binder Grade

Select starting point in middle of range

Test strip - monitor temperatures & density

Interim Guidelines (continued)

Determine <u>lowest</u> laydown temp to get density

- Estimate heat loss
 - Haul distance
 - Ambient temperature
 - ➤ Wind
 - Mat thickness
 - PaveCool

Test Strip Temp + Heat Loss = Plant Mix Temp

Other Items That Contribute to Emissions

Handling aggregate and RAP Anti-strip additives Plant and paving equipment Plant burner operation Weather conditions Atmospheric inversions Night paving

Guidance Available

EC 101

Best Management Practices To Minimize Emissions During HMA Construction

ASPHALT PAVEMENT ENVIRONMENTAL COUNCIL

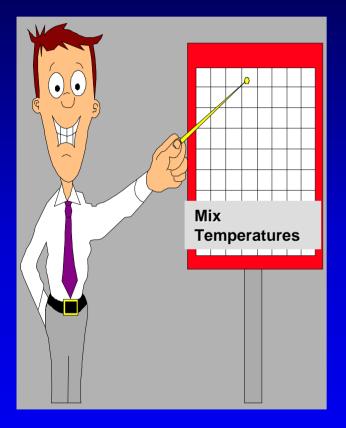
ARTINGAL ADDIVALT PARENESS ADDIVIDUALITY ADDIVIDUALITYA ADDIVIDATIANA ADDIVIDATIANA ADDIVIDATIANA ADDIVIDATIANA ADDIVIDATIANA ADDIVIDATIANA ADDIVIDATIANA ADDI

Asphalt Pavament Environmental Council Best Practices

Typical Asphalt Binder Temperatures

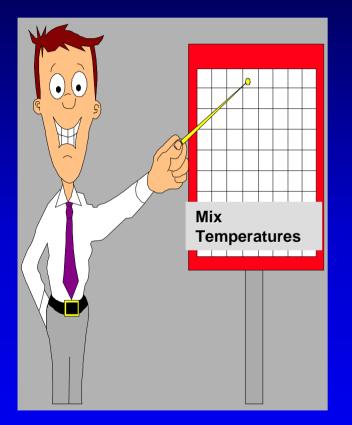
	HMA Plant Asphalt Tank Storage Temperature (°F)		HMA Plant Mixing Temperature (°F)	
Binder Grade				
	Range	Midpoint	Range	Midpoint
PG 46 -28	260 - 290	275	240 - 295	264
PG 46 -34	260 - 290	275	240 - 295	264
PG 45-40	260 - 290	275	240 - 205	264

Asphalt Pavement Environmental Council Best Practices


Controlling Fumes, Emissions and Odors from HMA Plant and Paving Operations

NT

t mixing temperature by: ng your asphalt supplier. e chart on the back.


- Gather data on aggregate moisture contant and fuel usage. If fuel usage goes up for the same or less moisture, find the reason.
- Have stack gases tested to see if they are in limits. If not, contact

Conclusions

New PG grades and density concerns lead to high mix temperatures Need separate ranges for lab and field Use common sense until research provides an answer

Conclusions

 EC 101 available through NAPA & Asphalt Institute
Contact AI at www.asphaltinstitute.org
Contact NAPA at www.hotmix.org

Questions?