nstitute aspha

Polymer Modified Asphalts Canadian Perspective

By Vince Aurilio Asphalt Institute Canadian Field Engineer

The Association of Modified Asphalt Producers 5th Annual Conference February 10, 2004

Overview

- Extensive research conducted by MTO and MTQ since mid to late 80's
- Used in situations where performance is required for severe conditions
- Documented performance 4-6 years increase in service life
- Important from a life-cycle perspective

PMA Usage in Canada

asphalt institute

Year	% Usage
1999	9
2000	5
2001	6.5
2002	9

We're

Based on Asphalt Usage Reports

PMA Usage in Western Canada

- Less than 10,000t used in 2003
- About 5 % of total AC
- Usage will likely grow
- Increase in lightly modified
- Limited use for highly modified because of cost

Results - What are we currently getting?

Philosophy

- We have one of the best crude sources in the world
- Give me what we're currently getting
- For the same price
- With the same performance

Results - Soft Conversion of Straight-runs?

asphalt institute

- 80/100C => PG 58-22
- 80/100A=> PG 64-25
- 120/150A => PG 58-28
- 150/200A =>
- 200/300A => PG 52-34

- No Agreement, <u>sticking point:</u> how do we deal with 150/200A?

• 300/400A => PG 46-37

Results - What should we specify?

- Base Grade Maps
 - Temperature Algorithms
 - Low : use TAC not LTPP
 - High: Use LTPP not SHRP
 - Work in progress
- Other Issues
 - Grade Bumping -> use AASHTO MP-2
 - Overlay vs New > modifieds over cracked?
 - Recycle ?

Alberta Initiatives

- Option to bid premium binder (PG 58-34) on Contracts – new, high volume projects
- Objective: To improve low temperature performance
- Life cycle cost adjustment factor \$2.00/tonne of mix
- Lowest Total Evaluation Price used to compare bids
- PG 58-34 would provide 3 extra years with no crack sealing maintenance cost

PMA Usage in Ontario

- MTO PG 64-28 main grade on heavily trafficked highways
- Can be air blown or lightly modified
- Replaced by PG 70-28 in 2002 on 400 Series Highways
- PG 70-28 can also be produced as air blown or with polymer modification
- Estimated tonnage of these grades 70,000 t or about 40 %
- PG 58-34 replaced PG 52-34 in Northern Ontario; about 21,000 t per year (approx. 12%)

Performance Grades

New Technologies Considered

asphalt institute

<u>Asphalt</u>

- Smoothness
- ERS
- OGDL
- Heavy Duty Binder Course (HDBC)
- Superpave Technology
- SMA

Final Ranking

- 1. Smoothness (69)
- 2. ERS (61)
- 3. HDBC (60)
- 4. Asphalt Cement (56)
- 5. Drainage (54)
- 6. SMA (53)

7. Large Stone Mixes (49) 8. SuperPave (47)

Life Cycle Costing

asphalt institute

Cost effective based on improved performance!

Assessment of Premium Asphalts

- Rutting and low-temperature parameters provide reasonably good assessment of resistance to these distresses. Fatigue not as reliable.
- Reportedly extends life by:
 - Tailoring binder selection to meet environmental conditions.
 - Reducing low-temperature cracking and rutting (to what degree is still unknown).
- Grade-bumping found to be useful and cost-effective.

Findings

- asphalt institute
- MTO initial expectation 2-3 years increase in service life by implementing PGAB
- PGAB will improve pavement performance
- Long-term data needed to validate performance
- Study showed that there was at least 2.3 year extension to the asphalt pavement service life with using premium PGAB

Effect of Premium Asphalt on Distress Development – MTO Life-Cycle Report

Pavement Distress	Very Significant	Significant	Moderately Significant	Not Significant
Roughness		\checkmark		
Raveling	\checkmark			
Rutting	\checkmark			
Low Temperature Cracking	\checkmark			
Alligator Cracking		\checkmark		
Fatigue Cracking			\checkmark	

Perpetual Pavement Award Winner

4 3 12 -0 6 00 3 Φ u 12

HI. **THAK** 1 (ADVIVENUE) FILTER TOTAL PALITY LEAD

Selectum "

6005

2 **HEAT** III

Design Criteria

Windsor SMA - Final Product

FULL-DEPTH AC

Maintenance and Rehabilitation Strategies

DEEP STRENGTH HMA

Maintenance and Rehabilitation Strategies

MTO Perspective

- Superpave is a mix design system which will replace the Marshall method
- SMA will become our premium surface mix (high end of current Dense Friction Course mix application)
- It will cost more, but studies indicate it will perform better and longer

Combined net effect of new technologies

PMA Usage in Quebec (MTQ)

Binder Selection

- 1997 Specification Based
 - New construction & reconstruction
 - Resurfacing
 - Special mixes
- Factors that influence performance

MTQ Spec Evolution

- PG 58-34 replaced PG 52-34
- Increased use of PG 64-28 & 70-28
- Selection of different grades for base and surfaces mixes
- Use of stiffer binders for better moisture resistance

Tableau 2101–2

Catégories de gros granulats selon leurs caractéristiques intrinsèques de résistance à l'usure et aux chocs

Caractéristiques	Méthodes	Catégories de gros granulats						
intrinsèques	d'essais		2	3	4	5	6	
Micro-Deval (MD)	NQ2560-070	≤ 15	≤ 20	≤ 25	≤ 30	≤ 35	\leq 40	
Los Angeles (LA)	BNQ2560-400	≤ 35	≤ 45	≤ 50	≤ 50	≤ 50	≤ 50	
(MD+LA)		≤ 40	≤ 55	≤ 70	≤ 75	≤ 80	≤ 8 5	

Tableau 2101–3

Catégories de gros granulats selon leurs caractéristiques de fabrication

Caractéristiques	Méthodes	Catégories de gros granulats						
de fabrication	d'essais	а	Ь	с	d	е		
Fragmentation (%)	LC21-100	100	≥ 75	≥ 60	≥ 60	≥ 50		
Particules plates (%)	NQ2560-265	≤ 25	≤ 25	≤ 25	≤ 30			
Particules allongées (%)	NQ2560-265	≤ 4 0	≤ 40	≤ 4 5	≤ 5 0	_		

Tableau 2101–4

Catégories de granulats fins selon leurs caractéristiques intrinsèques de résistance à l'usure et de friabilité et selon leur caractéristique de fabrication

Caractéristiques	Méthodes	Catégories de granulats fins				
intrinsèques	d'essais	1	2	3		
Micro-Deval (MD)	LC21-101	≤ 3 0	≤ 35	≤ 35		
Friabilité	NQ2560-080	≤ 4 0	≤ 4 0	_		

Tableau 4201–3

Caractéristiques complémentaires des granulats pour enrobés à chaud selon les usages

Caractéristiques	complémentaires	Méthodes d'essais	Couche de base	Couche de roulement
Gros granulats	Propreté (particules < 80 μm) (% max.)' (gravière et sablière) Propreté (particules < 80 μm) (% max.)' (carrière) Coefficient de polissage par projection (min)²	CSA-A23.2-5A CSA-A23.2-5A LC 21-102	1,0 1,5	1,0 1,5 0,45
Granulats fins	Mottes d'argile et particules friables (% max.) Coefficient d'écoulement³ Teneur en particules inférieures à 5 µm (% max.)ª	BNQ 2560-250 NQ 2560-075 NQ 2501-025	2,0 ≥ 80 ≤ 4	2,0 ≥ 80 ≤ 4

Notes : I. Cette caracréristique s'applique à chaque classe granulaire.

2. Uniquement pour les gros granulats de caractéristiques intrinsèques de catégorie 1 ou 2.

Régions pour type de liant

3. Pour ds granulats fins de catégorie 1 uniquement.

Le pourcentage est établi par rapport au passant 5 mm.

CONSTRUCTION NEUVE - RECONSTRUCTION EB-20 • EB-14 • EB-105 • EB-10C • ESG-10 • ESG-14

Choix des composants • Recommandations

TYPE DE ROUTE	VOLU CIRCU	ME DE Lation		BITUME		COUCHE DE ROULEMENT			COUCHE DE BASE				
	DJMA	ECAS	ZONE I PG	ZONE 2 Pg	ZONE 3 PG	GR GRAN	OS ULATS	GRANULATS FINS.	ESSAIS SPÉCIAUX	GR GRANI	OS ULATS	GRANULATS FINS	ESSAIS SPÉCIAUX
	> 20 000	> 300 000	64-34	64-34	58-40	L.	а	1	Orniéreur CPP	2	с	1	Orniéreur
Autoroutes	< 20 000	< 300 000	64-34	64-34	58-40	2	b	I.	Orniéreur	3	с	I.	Orniéreur
	> 5 000	> 150 000							GIT				
	< 5 000	< 150 000	64-34	64-34	58-40	2	b	1	Orniéreur CPP	4	с	2	
	> 20 000	> 300 000	64-34	64-34	58-40	2	b	1	Orniéreur CPP	3	с	I.	Orniéreur
Nationales	< 20 000	< 300 000	64-34*	64-34*	58-40*	3	b	2	Orniéreur [*]	3	d	2	Orniéreur*
	> 5 000	> 150 000	58-34	58-34	52-40								
	< 5 000	< 150 000	58-34	58-34	52-40	3	с	2		3	d	3	
Dágionalos	> 20 000	> 300 000	64-34	64-34	58-40	2	b	1	Orniéreur CPP	3	с	2	Orniéreur
et	< 20 000	< 300 000	58-34*	58-34*	58-40*	З	b	2	Orniéreuř	З	d	2	Orniéreur*
Collectrices	> 5 000	> 150 000	58-28	58-34	52-40								
	< 5 000	< 150 000	58-28	58-34	52-40	3	с	2		3	d	2	
Autres usages			58-28	58-34	52-40	4	с	2		4	с	2	

* Réseau de camionnage

Note : Lorsque la présence d'ornières justifie une intervention sur la couche d'usure, l'essai de résistance à l'orniérage est recommandé. Généralement, le bitume doit être modifié pour obtenir un intervalle H-L > 90.

Direction du laboratoire des chaussées

CHOIX DES COMPOSANTS • ENROBÉS SPÉCIAUX

TYPE D'ENROBÉ	TYPE DE ROUTE	VOLUME DE CIRCULATION		BITUME PG	GROS GRANULATS		GROS GRANULATS		GRANULATS FINS	ADDITIFS	ESSAIS SPÉCIAUX
		DJMA	ECAS								
EG-10	Autoroutes	Tout	trafic	64-34	I	а	I	Aucun	Orniéreur CPP		
	Nationales	Tout	trafic	64-34	2	b	I	Aucun	Orniéreur CPP		
	Autoroutes	> 20 000	> 300 000	58-28	T	b	I	Fibres d'amiante	Orniéreur CPP		
EGA-10		< 20 000	< 300 000	58-28	2	b	I	Fibres d'amiante	Orniéreur CPP		
	Nationales et	> 20 000	> 300 000	58-28	2	b	I	Fibres d'amiante	Orniéreur CPP		
	régionales	< 20 000	< 300 000	58-28	3	b	2	Fibres d'amiante	Orniéreur		
Drainant	Autoroutes et nationales	> 20 000	>300 000	64-34	L	a	I	Aucun	Orniéreur CPP		
Chape	Tout type	Tout trafic		70-34	Aucun	Aucun	3	Aucun	Aucun		
Bicompoflex	Tout type	Tout trafic		58-28	Aucun	Aucun	3	Fibres d'amiante	Aucun		

00-12-01

PMA Usage in Eastern Canada

- Used under severe loading conditions e.g. truck climbing lanes
- About 1000t of PMA (PG 64-28 & PG 70-28) specified by Nova Scotia DOT in 2003
- About 2.5 % of total AC
- Good performance to date
- Not specified by other Provinces

Closing Remarks

- Life-cycle costing is the key to selecting the best alternative Big Picture!
- Focus on new technologies e.g. Superpave, SMA, Perpetual Pavements
- Address performance issues
- Economic concerns?

Thank You! Any Questions?