

Engineered Frameworks for Evaluating the Use of Recycling Agents in Surface Asphalt Mixtures for Virginia

Jhony Habbouche, Ph.D., P.E.

Virginia Transportation Research Council (VTRC)

Research Team

Saqib Gulzar **NCSU**

Andrew Fried **NCSU**

Jaime Preciado **NCSU**

Virginia's BMD Specifications

Cracking Indirect Tensile (IDT) Test (ASTM D8225)

CT index \ge 70

Rutting

Asphalt Pavement Analyzer (APA) Rut Test (AASHTO T 340) RD < 8.0 mm

Durability Cantabro Mass Loss Test (AASHTO TP 108) CML < 7.5 %

Moisture Damage Tensile Strength Ratio Test (AASHTO T 283) TSR > 80 %

Objectives and Scope of Work

 Establish a performance-based approach to facilitate the determination of acceptability of a specific RA product for inclusion in VDOT Approved Product List (APL).

>Benchmarking of RA modified binder blends and mixtures

Comparing the properties and similarities of RA-modified binder blends to the "VDOT QA reference binder dataset"

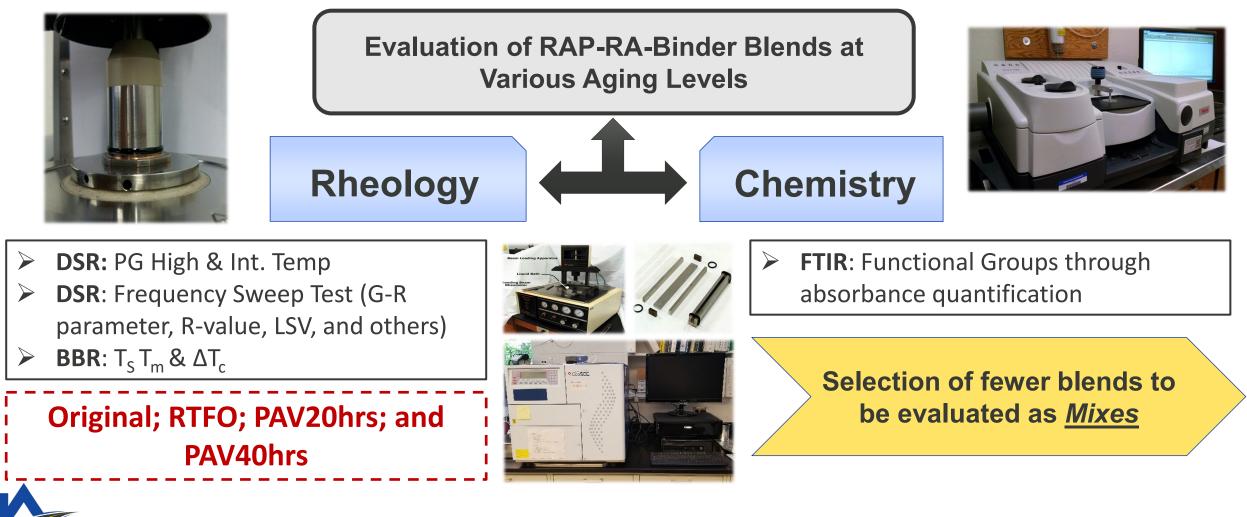
• Develop a framework to evaluate short- and long-term effectiveness of RAs in improving the performance of asphalt mixtures, especially with high RAP contents.

Experimental Program – Phase I

Laboratory Characterization of Asphalt Binders and Binder Blends

Evaluated Materials

- Asphalt Binders
 - B1: PG64S-22 (Hopewell, VA) (PG 68.1-22.4)
 - B2: PG64S-22 (Roanoke, VA) (PG 67.0-24.6)
 - B2: PG58-28 (Greensboro, NC) (PG 60.6-30.3)
- RAP Sources
 - **R1: PG 95.5-7.9**; AC = 4.9%; Content 45% (Salem, VA)
 - R2: PG 107.1-4.7; AC = 5.2%; Content 35% (Burkeville, VA)
 - R3: PG 94.5-10.3; AC = 4.4%; Content 40% (Chesapeake, VA)
- Recycling Agents (RA)
 - Paraffinic Oil (RA1) ~10% by total weight of virgin binder (max per NCHRP 09-58 &AI)
 - Aromatic Extracts (RA2) and Tall Oils and Fatty Acids (RA3)
 - Triglycerides and Fatty Acids (RA4, RA5, and RA6) ~2 to 6%



RA Dosages

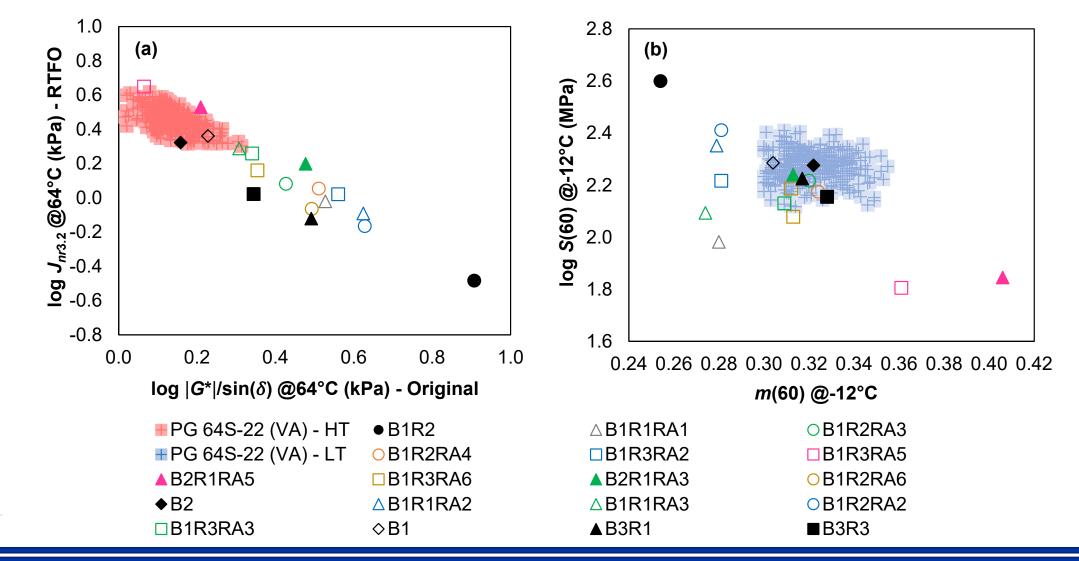
Binder Source	RAP Source	Name	Recycling Agents (RA)						
Jource			RA1	RA2	RA3	RA4	RA5	RA6	
Hopewell, VA (B1)	Salem (R1)	B1R1	15.52%	4.29%	5.90%	6.25%		5.71%	
	Richmond (R2)	B1R2		5.29%	5.70%	5.79%	8.49%	5.20%	
	Chesapeake (R3)	B1R3		3.80%	4.10%	4.50%	8.68%	3.90%	
Roanoke, VA (B2)	Salem (R1)	B2R1			4.40%		9.31%	4.62%	
	Richmond (R2)	B2R2				4.52%	8.49%		
	Chesapeake (R3)	B2R3	14.47%	3.52%	2.60%				
Greensboro, NC (B3)	Salem (R1)	B3R1							0.00%
	Richmond (R2)	B3R2				1.21%			
	Chesapeake (R3)	B3R3							0.00%

Dosage provided by manufacturer by total weight of virgin binder to meet a PG 64-22

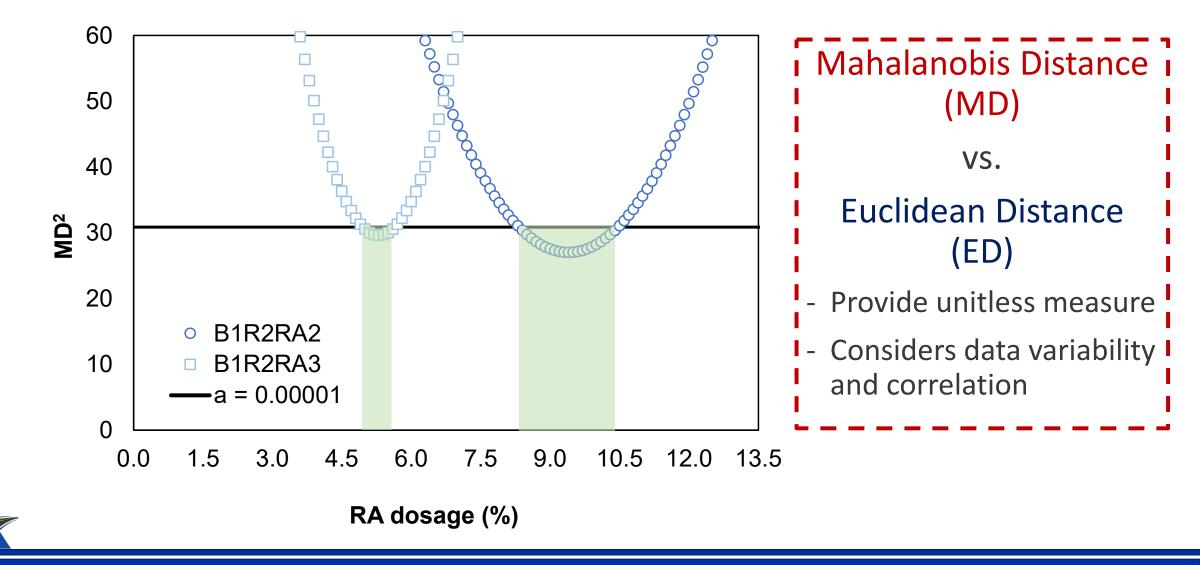
Testing Details

Continuous Binder Performance Grade

Binder Source	RAP Source	Name	No RA	RA1 Paraffinic Oil	RA2 Aromatic Extract	RA3 Other	RA4 TFA	RA5 TFA	RA6 TFA
1, PG 64-22	1	B1R1	76-16	73.6-19.5	75.3-18.6	69.6-20.7	71.5-27.5		71.1-25.5
	2	B1R2	76-16		76.2-20.2	71.8-23.7	73.0-24.1	70.2-30.2	73.3-23.3
	3	B1R3	76-16		73.2-22.9	69.6-23.3	71.9-27.9	64.5-30.9	70.4-23.9
2, PG 64-22	1	B2R1	76-16			71.7-22.7		66.7-30.3	71.8-28.6
	2	B2R2	76-16				74.5-23.6	67.7-31.6	
04-22	3	B2R3	31R3 76-16 32R1 76-16 32R2 76-16 32R3 76-16 32R3 76-22	69.0-24.9	72.6-24.9	70.4-26.3			
3, PG 58-28	1	B3R1	70-22						
	2	B3R2	70-22				72.8-24.1		
	3	B3R3	70-22						


Did not restore low temperature PG

Restored low temperature PG



Low temperature PG improved

Similarity Analysis - Example

Multivariate Control Procedure

RAAcceptance Framework 1

Framework for Inclusion of RAs into the VDOT Approved Product List (APL)

VDOTAPL - Procedure

<u>Note:</u> The work prescribed under this framework is to be completed by an accredited third-party laboratory.

• Step 1 – Selection and Baseline Evaluation of Component Materials

Virgin Asphalt Binder PG 64S-22 sent by VDOT with all necessary properties: |G*|/sinδ at 64°C; PGH_c; |G*|sinδ at 25°C; PGI_c; PGL_c; ΔTc; and J_{nr,3.2} at 64°C.

>RAP Material and Extracted & Recovered RAP Binder

 \odot Representative source of RAP will be sent by VDOT

O Properties: 94ºC < PGH < 106ºC & -10ºC < PGL < -4ºC</p>

Perform Extraction & Recovery

 \odot Determine necessary properties: $|G^*|/sin\delta$ at 64°C; PGHc; $|G^*|sin\delta$ at 25°C; PGIc; PGLc; and ΔT_c .

Recycling Agent

 Collect a sample from a batch produced within a year period of the evaluation period.

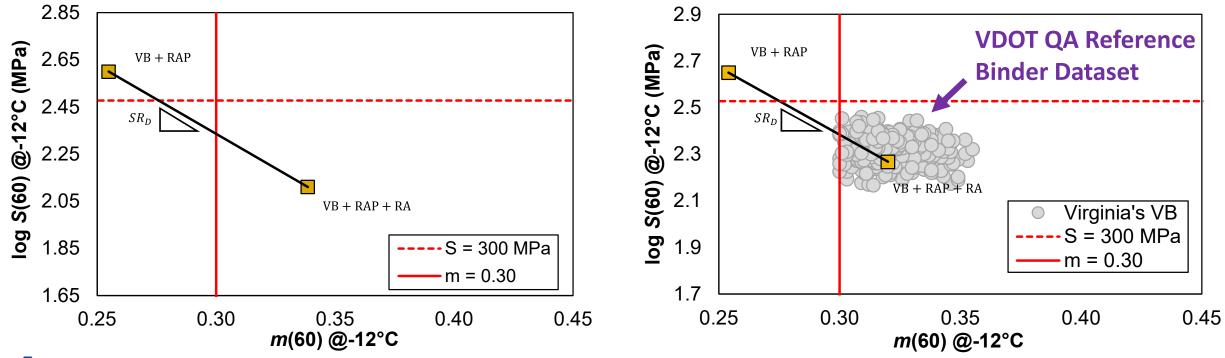
• Step 2 – Evaluation of the Recycled Binder System

Recycled Binder System (VB + RAP) = Virgin Binder (VB, PG 64S-22 from Step 1) + RAP binder (equivalent of 40% RAP by total weight of mixtures)

Determine necessary properties: |G*|/sinδ at 64°C; PGHc; |G*|sinδ at 25°C; PGIc; PGLc; ΔTc; and Jnr,3.2 at 64°C.

Step 3 – Dosage of Recycling Agent

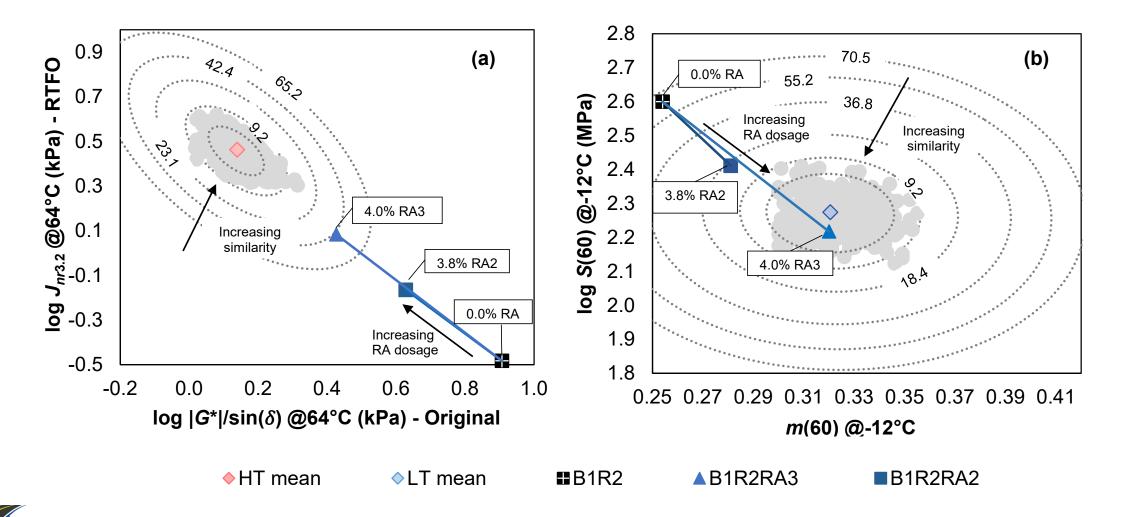
RA supplier to provide an "initial" dosage (ID) that would produce a blended binder system with max PGL of "-22°C".

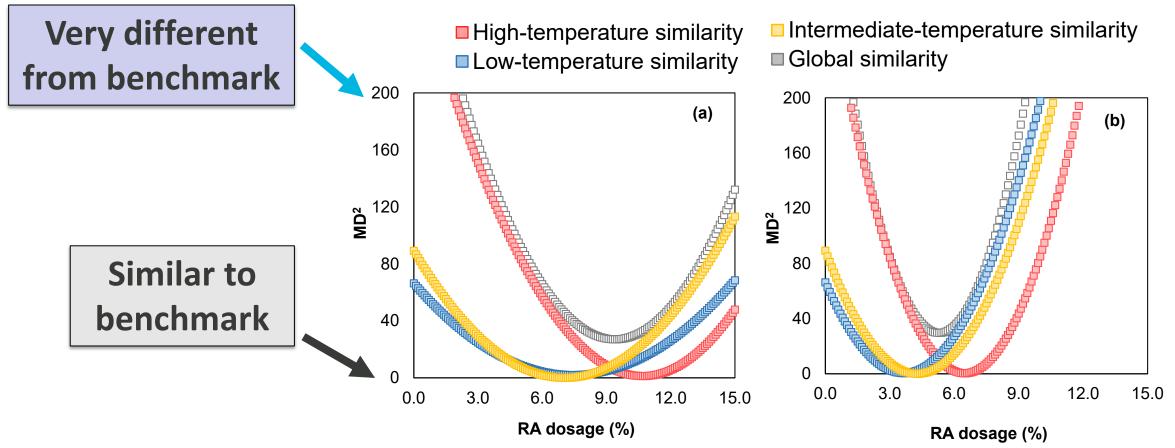

• Step 4 – Evaluation of RA-Modified Binder System

RA-Modified Binder System (VB + RAP + RA) = Virgin Binder (VB, PG 64S-22 from Step 1) + RAP binder (equivalent of 40% RAP by total weight of mixtures) + RA (ID dosage from Step 3)

 \odot Determine necessary properties: $|G^*|/sin\delta$ at 64°C; PGHc; $|G^*|sin\delta$ at 25°C; PGIc; PGLc; ΔTc ; and Jnr,3.2 at 64°C.

• Step 5 – Low Temperature Binder Similarity Analysis




- Step 6 Temp-Specific and Global Binder Similarity Analysis
 - Select a 2nd dosage: 0.5xID or 1.5xID (2nd dosage should be < 10%; ID = initial dosage selected in Step 3)</p>
 - RA-Modified Binder System (VB + RAP + RA) = Virgin Binder (VB, PG 64S-22 from Step 1) + RAP binder (equivalent of 40% RAP by total weight of mixtures) + RA (2nd dosage)
 - Determine necessary properties: |G*|/sinδ at 64°C; PGHc; |G*|sinδ at 25°C; PGIc; PGLc; ΔTc; and Jnr,3.2 at 64°C.
 - >Perform similarity analysis using MD (distance !)

<u>Note:</u> Approval remains in effect for up to 3 years (if formulation has not been altered !!!)

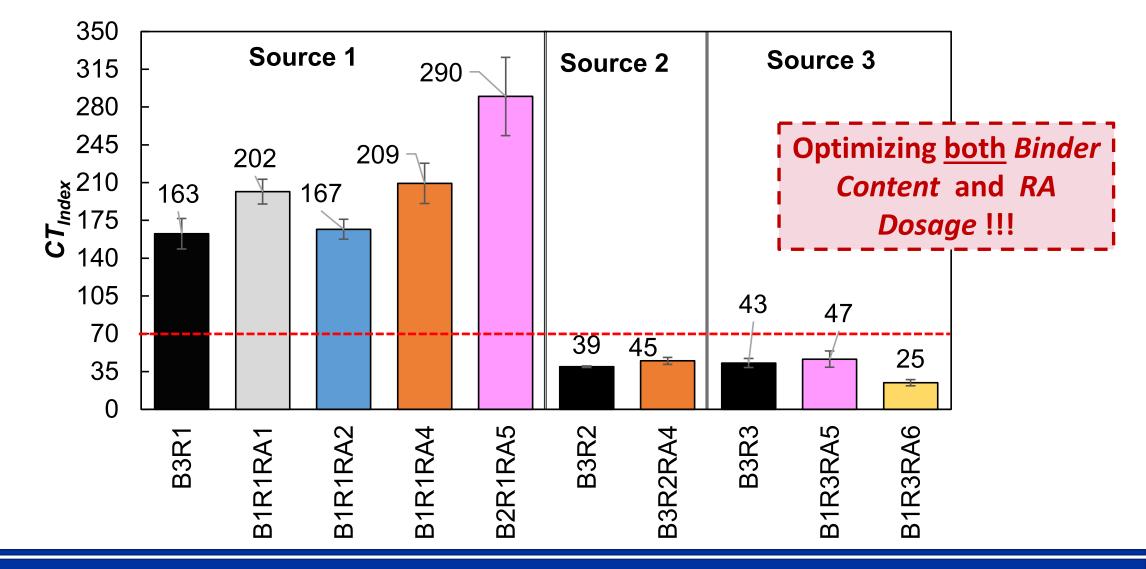
Effect of RA Dosage on Blend Similarity

Similarity by means of MD - Examples

If similarity is achieved, the RA product, along with all corresponding details, can be added to the VDOT APL. This validity remains in effect for up to 3 years from the approval date, provided that the formulation of the RA product has not been altered.

Experimental Program - Phase II

Laboratory Characterization of Asphalt Mixtures


Evaluated Mixtures

Binder Source	RAP Source	Name	Recycling Agents (RA)						
Source			RA1	RA2	RA3	RA4	RA5	RA6	
Hopewell, VA (B1)	Salem (R1)	B1R1	15.52%	4.29% ★	5.90%	6.25%		5.71%	
	Richmond (R2)	B1R2		5.29%	5.70%	5.79%	8.49%	5.20%	
	Chesapeake (R3)	B1R3		3.80%	4.10%	4.50%	8.68%	3.90%	
Roanoke, VA (B2)	Salem (R1)	B2R1			4.40%		9.31%	4.62%	
	Richmond (R2)	B2R2				4.52%	8.49%		
	Chesapeake (R3)	B2R3	14.47%	3.52%	2.60%				
Greensboro, NC (B3)	Salem (R1)	B3R1							0.6%
	Richmond (R2)	B3R2				1.21%			\star
	Chesapeake (R3)	B3R3							0.0%

Volumetrics and Gradations; CML; APA; IDT-CT; E*; CF; SSR; + STOA vs. LTOA (3 D) vs. LTOA (1 D)

Evaluated Mixtures - CT Index Data

RAAcceptance Framework 2

Framework for Design BMD Surface Mixtures with RAs

Mix Design - Procedure

<u>Note:</u> Work to be completed by Contractor & RA Supplier &/or an accredited thirdparty laboratory.

• Step 1 – Selection and Evaluation of Component Materials

Virgin Binder PG 64S-22 comparable to that of production

Determine necessary properties: |G*|/sinδ at 64°C; PGHc; |G*|sinδ at 25°C;
 PGIc; PGLc; ΔTc; and Jnr,3.2 at 64°C.

>RAP Material and Extracted & Recovered RAP Binder

Representative sample of RAP <u>comparable to that of production</u>

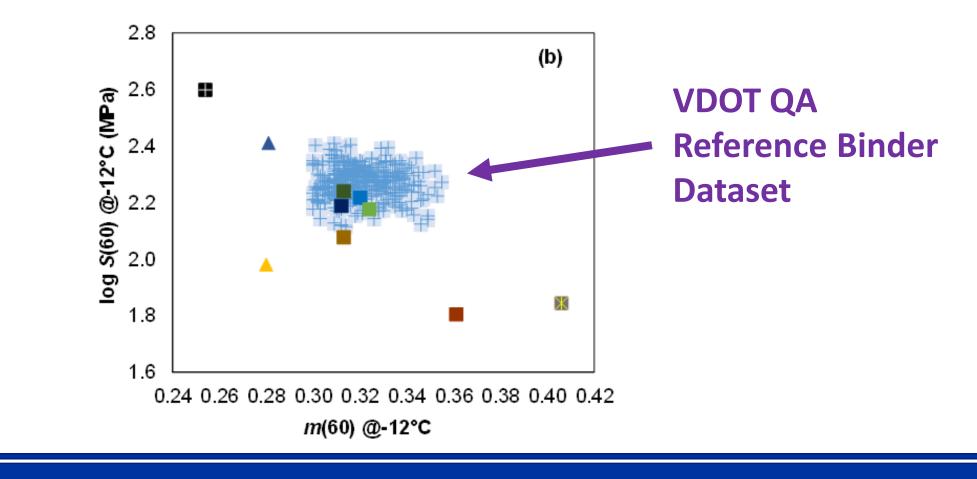
Perform Extraction & Recovery

Recycling Agent

 \odot Determine necessary properties: $|G^*|/sin\delta$ at 64°C; PGHc; $|G^*|sin\delta$ at 25°C; PGIc; PGLc; and ΔT_c .

Step 2 – Dosage of Recycling Agent

➢RA supplier to provide a dosage that would produce a blended binder system with max PGL of "-22^oC" (<10%).</p>


• Step 3 – Evaluation of RA-Modified Binder System

RA-Modified Binder System (VB + RAP + RA) = Virgin Binder (VB, PG 64S-22 from Step 1) + RAP binder (equivalent of RAP content to be used during production + RA (ID dosage from Step 2)

 \odot Determine necessary properties: $|G^*|/sin\delta$ at 64°C; PGHc; $|G^*|sin\delta$ at 25°C; PGIc; PGLc; ΔTc ; and Jnr,3.2 at 64°C.

• Step 4 – Low Temperature Binder Similarity Analysis

• Step 5 – Design of BMD Surface Mixtures with RA

Follow VDOT BMD Special Provisions

 \odot Aggregate gradations and Volumetric properties

 Short-term aged properties (only!): CML < 7.5%, APA rut depth < 8.0 mm, and CT index > 70.

>New LTOA Protocol

• Condition loose mixtures for 1 day (24 hours) at 95°C

• Evaluate 1-D LTOA mixtures in terms of IDT-CT + *check for variability!!!*

• Step 5 – Design of BMD Surface Mixtures with RA

CT index Aging Sensitivity

$$(CT_{index})^{1day\,LTOA}_{aging \,sensitivity} = \left[\frac{(CT_{index})_{STOA} - (CT_{index})_{1day\,LTOA}}{(CT_{index})_{STOA}}\right] * 100$$

\rightarrow CT index Aging Sensitivity should be < 45%.

<u>Note:</u> if a mix design is not achieved with a PG 64S-22 and RA dosage < 10%, the producer <u>CAN</u> restart from Step 1 while considering a virgin binder of PG 58-28 instead of PG 64S-22.

On-Going Efforts

Validation of Both Frameworks

Three high RAP trials with RAs in Virginia: 2022(x1) and 2023(x2)
 Develop a draft Virginia Test Method + Automated Tool (e.g., excel)

• RAP Binder Availability and Activity

Looking at 14 representative RAP sources in Virginia
 RA is a major element for the activity assessment

• Field Performance Assessment and Spec Validation

All BMD sections / mixtures in general
Focus on high RAP with RA sections

Accelerated Pavement Testing

Acknowledgements

Asphalt Contractors

>Allan Myers; Colony Construction; and Boxley

• Asphalt Binder Supplier

Associated Asphalt

Recycling Agents Suppliers

Arkema Science; Cargill; Holly Frontier; Ingevity; Safety-Kleen Oil; and Sripath Technology.

• Research Team Staff

>VDOT Materials Division and Districts; VTRC; and NCSU

Thank You!

For more information: Jhony.Habbouche@vdot.virginia.gov

