

PENNSYLVANIA TURNPIKE COMMISSION

ACEC Leadership Academy June 3, 2024

Keith Jack, Director of Facilities Operations

Economic Engine

The PA Turnpike Commission is more than a roadway.

- A billion-dollar enterprise driving our state and national economies
- Generates, collects, and manages \$1.5 billion annually

Strengthening Communities

OUR VISION

Driving the standard for safety, customer service and mobility.

Improve safety-zero fatalities, no work-zone injuries, reduced incidents

Achieve accessible, reliable, and uninterrupted travel

Be the leader in transportation services

OUR VALUES

To operate a safe, reliable, customer-valued toll road system that supports national mobility and commerce.

The PTC's 30-Year Commitment to Sustainability

Sustainability Committee

Mission: to build an organization-wide culture where all projects consider economic, environmental, and social impacts as identified by the United Nations' 17 Sustainable Development Goals and adopted by the Pennsylvania Green Gov Council.

PA TURNPIKE SUSTAINABLE DEVELOPMENT

TURN PIKE

Our Commitment to Achieve a Better and More Sustainable Future for All

Sustainability Principles & Analysis

Sustainability Scale	1 – Lowest 10 - Highest									ghest
	1	2	3	4	5	6	7	8	9	10
Planet	0	0	0	Ο	0	0	$oldsymbol{eta}$	0	0	0
People	0	0	0	0	ullet	\bigcirc	0	0	0	0
Profit	0	0	0	0	0	0	$oldsymbol{eta}$	0	0	0

Commitment to Social Responsibility

Agencywide

SECA Campaign

Sustainability Committee

- Making Sustainable Attainable
- Earth Day Litter Pick Up
- Hunger Action Month &
- Quarterly Food Drives

Women's Network

- Human Trafficking Awareness Campaign
- Giving Garden
- Women's Conference
- STEAM Day

Turnpike Employee Association

- Pick an Angel Program
- Toys for Tots
- Food Drives
- Blood Drives
- Wounded Warriors

Pollinator Gardens

Five pollinator gardens

- Central Administration Building
- Harrisburg West
- Hickory Run
- Bensalem
- o Irwin

Open Road Tolling Conversion – 2025/26

All tolling points move to the roadway, using overhead gantries to replace traditional exit/entry points.

- Phased Implementation 2025/27
 - East of Reading and the N.E. Extension early 2025
 - Western Implementation 2026 (tent.)
- Interchange building demolition in 2025-2027

Open Road Tolling Benefits

Meets customer expectation

- Clear preference for electronic tolling methods; 85+ adoption of E-ZPass
- National standard

Increases access

- Built at a fraction of the cost of an interchange
- Increases ability to fulfill the access requests we receive from communities across the Commonwealth
- \$25 million in savings per year on operations and maintenance

Safer

 Eliminates confusion and lane switching at exit/entry

Increases mobility

Eliminates travel-time impacts of traditional tolling

Better for the environment

- Continuous travel results in lower carbon emissions
- Smaller physical footprint

Sideling Hill Trailhead Project

- PTC's proximity to the Abandoned Turnpike and Tunnels of The Old PA Pike (TOPP) Trail.
- Incorporation into the existing Parking Expansion Project.
- Excess 67-acre Turnpike parcel allows for amenity expansion.
- Connections with PA Bike Route S and State Forest trail network.

Gateway to The Alleghenies

25 Mile Radius

Diversity, Equity, and Inclusion Council

Healing & Education Committee

DIVERSITY, EQUITY, AND INCLUSION COUNCIL

Equitable Hiring & System Reform Committee

Marketing & Public Engagement Committee

Transportation Justice & Equities Committee

Diversity, Equity, and Inclusion

Expanding Community and College Outreach to Highlight Employment Opportunities

Improving Business Supplier Diversity Program

Expanding Internal and Public Cultural Programming

GreenGov Council – 100% Certification Score

100% Certification Score from the PA GreenGov Council in 2022 and 2023

Internal Outreach

Earth Week

Innovation Council

Engineering Design Form

Mileposts

External Outreach Partners

PIRE

ACEC American Council of Engineering Companies

TOLLING. MOVING SMARTER.

NSF Engineering Research Center

Municipal Associations Parks/Recreation/ Environment Business/ Main Streets

Sustainable Construction

Sustainable Construction

Sustainable Construction

Our Commitment to Sustainability

Sustainable Roadway 2040

VISION FOR A SUSTAINABLE ROADWAY **2040**

L PENNA ⊿ TURN

PA TURNPIKE FIBER OPTIC NETWORK

Planned Construction Completion & Network Activation

PENNA

TURN

Wireless

Vision FOR A SUSTAINABLE ROADWAY **2040**

Pennsylvania Safety Transportation and Research Track (PennSTART)

PennSTART Site RIDC Westmoreland Innovation Center

RIDC Westmoreland Innovation Center is the center for technology and value-added manufacturing within the region. Located 40 miles from downtown Pittsburgh.

- 2.8 million sqft of Manufacturing Space
- Current Tenants: Siemens Energy, DNP, Cenveo, Intervala, McCollister, and WCCC Advanced Technology Center, StackAV and more.
- BBBRC Innovation Accelerator under construction
- Site prep for PennSTART company attraction needed

PennSTART Construction Timeline

Fall 2023: Track Design Begins Winter 2023 - Spring 2024: Conceptual Design / Design Development Summer 2024: Phase 1 Final Design Summer 2024 - Spring 2025: Site Grading, Utilities & Phase 1 Track Delivery Summer 2025: Test Track (high speed oval) construction & Technology Integration Spring 2026: Test Track Construction Complete

PennSTART

Traffic Incident Management

- Law Enforcement / Fire / Rescue / EMS
- Towing & Recovery / Public Works / Utilities
- Unmanned Arial Vehicles (Drones Application Training)

ITS / Tolling Technologies

- Tolling Agencies
- EZPass Group
- Toll Tech Manufacturers & Integrators

Commercial Vehicles

- Motor Truck Carrier Association
- Bus and Motor Coach Association
- Manufacturers & Integrators

Connected and Automated Vehicles

- Research Institutions
- Automotive & Equipment Manufacturers
- IT Data Solutions
- Railway & Intersection Safety

Work Zone Safety

- Maintenance Workers
- Contractors
- OSHA and ANSI Work Zone Safety Training

Transit Vehicles

- Federal Transit Administration
- State DOTs
- Transit Agencies
- Bus Technology Manufacturers

Future Connection With Customers

Vision FOR A SUSTAINABLE ROADWAY 2040

Buried Electronic Transmission Lines

Vision FOR A SUSTAINABLE ROADWAY **2040**

Solar Canopy

- 2025 Fall Completion at the Central Administration Building
- 2 E Transit (Ford Van)
- Installation of stationary inductive charger for E transit
- Installation level 2 chargers for employee and fleet use.
- Public facing chargers would help comply with NEVI guidelines

Solar & Microgrids

- Identified a site with lucrative electricity value east of Brownsville Township
- Parcels worth over \$1.5 million in electricity value
- Hilly area, but may be non-issue due to horizontal structure of parcels

Solar

Somerset Service Plaza

Reimagining the Turnpike

MASPIRE

NSF Engineering Research Center

Driving Electrification – Empowering Progress

Service Plazas

Electric Vehicle Charging Stations

Minimizes infrastructure and maintenance on Plugin infrastructure

Eliminates any physical issue with plugging in

- Decentralized power sources add resiliency to EV transportation
- 13% of loss of energy through transmission lines
- New opportunities with the collaboration of vehicle manufacturers, trucking customers, and electric companies

Dynamic Inductive Charging Discussion Points

- Can be limited by speed high and low Traffic Flows and Safety
 - Light indicators for responders
 - Emergency power shut-offs on site and remote
- loliday travel numbers

Deployment can be combined with other roadway activities

Inductive charging worksheet

Stationary Inductive Showcase

SAE J2954 DIPS Overview

Basic interoperability concept Ground Assembly

GA: H-Field source description ('receptacle')

<u>'Plug' Analogy:</u> - plug/receptacle does not care which connector is used

- GA/VA can be developed independently

Vehicle Assembly VA: free choice of VA ('plug')

Provided by

Test Station GA

Basic working principle of DIPS:

- Standardized H-Field provided by GA
- VA is free to decide how the evaluation is realized

SAE J2954 Test Station GA

Vertical Field Coils :

- 4 flat coils (with different frequencies 111.5 kHz .. 113.5 kHz) placed above the winding and the ferrite from the power transfer
- Flux defined to: 2.8 At_rms

VA example for static charging:

_

Coils winded around the ferrite of the energy coil with 45° to driving direction

Horizontal Field Coil:

winded around the ferrite (and litz wire)

of power transfer

coil with defined

Flux defined to:

0.26 At rms

Solenoid Coil

<u>One Hardware f</u>or evaluation of magnetic field from horizontal and vertical field coils in GA

*Source: Interop funding project

Dynamic Inductive Charging

Dynamic Inductive Charging 2030 Mon/Fayette Expressway Pilot Project

Objectives

- Multiple type of inductive charging manufacturers
- Shared infrastructure for multiple classes

- Open communication platform
- Charge for the charge
- 3 to 5 miles of inductive charging

Somerset Microgrid Training Center

Inductive Charging Infrastructure Deployment

Car Model

- EV can travel 3 to 5 miles on 1 Kwh.
- 1 car consume 1.16 Kwh if pass through 3 miles of inductive charger - increase battery capacity by 4 miles.

EV battery Kwh	80	Tesla battery capacity
Total Miles	221	Miles driven from Harrisburg east to Warrendale
Inductive Charger length (Miles)	51	3 miles of Road Inductive charger at all 17 Interchange
Kwh consume through Inductive charger	19.72	= (51*1.16)/3
Batter capacity (miles increase)	68	= (19.72*4)/1.16
% Battery charge	25%	=19.72/80

Truck Model

 Electric truck uses 2 kilowatt-hours per 1 mile

 1 truck consume 16.2 Kwh if pass through 3 miles of inductive charger - increase battery capacity by 8 miles.

EV battery Kwh	490	Battery capacity
Total Miles	221	Miles driven from Harrisburg east to Warrendale
Inductive Charger length (Miles)	51	3 miles of Road Inductive charger at all 17 Interchange
Kwh consume through Inductive charger	275.4	= (51*16.2)/3
Batter capacity (miles increase)	136	= (275.4*8)/16.2
% Battery charge	56%	=275.4/490

Reduced Carbon Emissions

Connect with Us

Making Sustainable Attainable

