FDOT PG BINDER SPECIFICATION

FLEXIBLE PAVEMENT COMMITTEE MEETING

APRIL 17, 2019

GAINESVILLE, FLORIDA

Overview

PG Binder Specification Certificate of Anlaysis FDOT Specification

Binder Tests

- What are they
- What does they mean
- What do I need to know

Superpave Performance Grades

Perform	an	ce G	rad	ÐS	5		PG 67-22		
Max. Design Temp.	PG 46	PG	52	F	PG 58	PG 64	PG 70	PG 76	PG 82
Min. Design Temp.	-34 -40 -46	-10 -16 -22 -2	8 34 -40 -46 -1	16-22	2-28-34-40	-10 -16 -22 -28 -34 -40	-10 -16 -22 -28 -34 -40	-10 -10 -22 2	8 -34 -10 -16 -22 -28 -34
Original									
<u>≥</u> 230 °C	Flash	Point							
<u>≺</u> 3 Pa-s @ 135 °C	Rotat	ional Vi	scosity						
> 1.00 kPa	DSR (DSR G*/sin δ (Dynamic Shear Rheometer)				r)			
<u>2 1.00 M a</u>	46	5	2		58	64	70	76	82
(Rolling Thi	n Fili	n Ove	n) RTI	F٩	, Mas	s Change	<u><</u> 1.00%		
> 2.20 kPa	DSR (ā */sin δ	(Dynamic Sh	near	Rheomete	r)			
2 2.20 14 4	46	5	2		58	64	70	76	82
(Pressure A	ging	Vess	el) PAV	7					
20 hours, 2.10 MPa	90	9	0		100	100	100(110)	100 110) 100(110)
<u><</u> 5000 kPa	DSR G*sin δ (Dynamic Shear Rheometer) Inter			mediateTenp. = [(Max. + Min.)/2] + 4					
	10 7 4	25 22 19 1	6 13 10 7 2	25 2	2 19 16 13	31 28 25 22 19 16	34 31 28 25 22 19	37 34 31 2	28 25 40 37 34 31 28
S <u><</u> 300 MPa	BBR \$	6 (creep	stiffnes	s)	& m-va	lue (Bending Bea	m Rheometer)		
m <u>≥</u> 0.300	-24 -30 -36	0 -6 -12 -1	8 <mark>-24 -30 -36</mark> -6	6 -1	2 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 - 2 -1	8 -24 0 -6 -12 -18 -24
If BBR m-value \geq 0.30) and creep s	tiffness is betw	een 300 and 600), the	D irect T ensio	in failure strain requireme	ent can be used in lieu of	the creep stiffr	iess requirement.
ε _f ≥ 1.00%	DTT (Direct Tensi	on Tester)						
	-24 -30 -36	0 -6 -12 -1	8 -24 -30 -36 -6	6 -12	2 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 -12 -1	8 -24 0 -6 -12 -18 -24

Certificate of Analysis

Definition:

Document issued by QA that confirms that a regulated product meets it product specification.

- ✤ Asphalt Binder Grade
- APL Number
- Batch / Lot Number
- Date Sampled & Tested
- Test Results

Source: Tank 8 APL Number 916-002-055 Lot Number: 222 PG Grade: PG 76-22 (PM Date Sampled: 06/22/2017	A)	Sampled By: ME Date Testing Completed: Date Received:	06/23/2017 06/22/2017	
Test	Test Method	Specification	Test Results	Units
		Original Binder		
Dynamic Shear, kPa (G*/sin δ, 10 rad/sec)	T315	1.0 Min @ 76C	1.20	kPa
Density @ 15.6 C	T228	Report	1.0361	kg/L
Specific Gravity @ 15.6 C	1220		1.0370	
Density, lbs/gal	T228	Report	8.646	lbs/gal
API	T228	Report	4.950	API
Rotational Viscosity, Pa.s.				
@ 135C, 20rpm spindle# 27	T316	3.0 Max	1.438	Pa.s.
@ 165C, 20rpm spindle# 27			0.400	Pa.s.
Flash Point COC, C	T48	230C Minimum	363	С
Solubility, % Soluble	T44	99.0% Minimum	99.94	%
Penetration @ 77 F, dmm	T49	Report	56	dmm

Sample Meets current FDOT requirements for PG 76-22 (PMA)

FDOT Original Binder Testing

Original Binder				
Solubility, AASHTO T44-14	in Trichloroethylene	Minimum 99.0% (Not applicable for PG 76-22 (ARB))		
Flash Point, AASHTO T48-17	Cleveland Open Cup	Minimum 450°F		
Rotational Viscosity, AASHTO T316-13 (2017)	275°F	Maximum 3 Pa·s ^(a)		
Dynamic Shear Rheometer ^(b) ,	G*/sin δ	Minimum 1.00 kPa		
AASHTO T315-12 (2016)	Phase Angle, δ ^(c) PG 76-22 (PMA) and PG 76-22 (ARB) ^(d)	Maximum 75 degrees		
Separation Test, ASTM D7173-14 and	163±5°C	Maximum 15°F		
Softening Point, AASHTO T53-09 (2013)	48 hours	(PG 76-22 (ARB) only)		

January 2019 FDOT Section 916-2.3 (AASHTO M 320 & M 332)

Solubility (AASHTO T 44)

FDOT Specification: Min. 99.0% in Trichloroethylene

Purpose:

Detect contamination of asphalt; ensuring that binder is substantially free of mineral matter

Effect of Filler Content to the Contractor:

- Accurate estimate of dust/asphalt ratio when the mix design is complete
- Impact on performance, particularly with respect to moisture damage
- Fillers are a cheap extender to increase PG grades

Flash Point (AASHTO T 48)

FDOT Specification:

Min. 450°F

Purpose:

Measure tendency of asphalt to produce flammable mixture when heated under controlled lab conditions

Contractor:

SAFETY

Rotational Viscosity (AASHTO T 316)

FDOT Specification:

Max. 3 Pa· s @ 275°F

Purpose:

Measures the viscosity of an asphalt at a designated temperature

- Viscosity at pumping and handling temperatures
- Mixing and compaction temperatures
- Not designed for modified asphalts consult your supplier

Dynamic Shear Rheometer (AAHTO T 315)

FDOT Specification:

G^{*} / sin δ = Min. 1.00 kPa at PG HT Phase Angle (δ) = Max. 75° at 76°C

Purpose:

Characterizing the viscous (G*) and elastic (δ) behavior of binders at medium to high temperatures

- Predictors of rutting and fatigue cracking susceptibility
- G* should decrease with temperature
- Phase angle should increase with increase in temp.
- To stay in grade 2.00 kPa

Separation Test (ASTM D7173)

FDOT Specification:

Max. 15°F

Purpose:

Measure the tendency of the CRM to separate from binder

Contractor:

Handling and Settlement Issue

Softening Point (AASHTO T 53)

FDOT RTFO Binder Testing

Rolling Thin Film Oven Test Residue (AASHTO T240-13 (2017))				
Rolling Thin Film Oven, AASHTO T240-13 (2017)	Mass Change %	Maximum 1.00		
Multiple Stress Creep Recovery, J _{nr, 3.2} AASHTO T350-14	Grade Temperature (Unmodified binders only)	"S" = $4.50 \text{ kPa}^{-1} \text{ max}$		
Multiple Stress Creep Recovery, J _{nr, 3.2} ^(d, e, f)	67°C (Modified binders only)	"V" = $1.00 \text{ kPa}^{-1} \text{ max}$ Maximum $J_{nr,diff} = 75\%$		
AASHTO T350-14	76°C (High Polymer binder only)	0.10 kPa ⁻¹ max		
Multiple Stress Creep	67°C (Modified binders only)	$R_{3.2} \ge 29.37_{0.2633} (J_{nr, 3.2})^{-1}$		
AASHTO T350-14	76°C (High Polymer binder only)	$R_{3.2} \ge 90.0$		

January 2019 FDOT Section 916-2.3 (AASHTO M 332)

Rolling Thin Film Oven (AASHTO T 240)

FDOT Specification:

Mass Change = Max. 1.00%

Purpose:

Measures the changes in PG properties that occur in a batch plant operating at approx. 150°C

- o Simulated STOA
- o Should be under 1.00%
- Monitors the excessive aging through the plant and the presence of possible light ends
 - If does not show up in flash typically a refinery
 - Fuming in plant

Multiple Stress Creep Recovery (MSCR) (AASHTO T 350)

Purpose:

Characterizes neat & polymer modified binders at their temperatures in which they are used

A measure of modification performance within the binder (% Recovery)

- Stiffness (Jnr) & Elasticity (%R)
- o Neat Binders Jnr= 2.00 − 4.50 kPa⁻¹
- o %Recovery no mix related
- Modified Binders typically around 0.50 and below

Multiple Stress Creep Recovery, J _{nr, 3.2} AASHTO T350-14	Grade Temperature (Unmodified binders only)	"S" = $4.50 \text{ kPa}^{-1} \text{ max}$
Multiple Stress Creep Recovery, J _{nr, 3.2} ^(d, e, f)	67°C (Modified binders only)	"V" = 1.00 kPa ⁻¹ max Maximum $J_{nr,diff} = 75\%$
AASHTO T350-14	76°C (High Polymer binder only)	0.10 kPa ⁻¹ max
Multiple Stress Creep Recovery, %Recovery ^(d, e) AASHTO T350-14	67°C (Modified binders only) 76°C (High Polymer binder only)	$%R_{3.2} \ge 29.37 (J_{nr, 3.2})^{-1}$ $%R_{3.2} \ge 90.0$
L'L'	Standard S grade Heavy H grade Very Heavy V grade Extreme E grade	traffic < 3 million ESAL's traffic > 3 million ESAL's traffic > 10 million ESAL's traffic > 30 million ESAL's

FDOT PAV Binder Testing

Pressure Aging Vessel Residue (AASHTO R28-12)				
Dynamic Shear Rheometer, AASHTO T315-12 (2016)	G [*] sin δ, 10 rad/sec.	Maximum 5000 kPa ^(f, g)		
Creep Stiffness, AASHTO T313-12 (2016)	S (Stiffness), @ 60 sec. m-value, @ 60 sec.	Maximum 300 MPa Minimum 0.300		
ΔTc, ASTM D7643-16	20 hours PAV aging S (Stiffness), @ 60 sec. m-value, @ 60 sec.	$\Delta Tc \ge -5.0^{\circ}C$		
Aging =				

Long Term Aging = 5-7 years

January 2019 FDOT Section 916-2.3 (AASHTO M 320)

Intermediate Temperature (Fatigue / Durability)

FDOT Specification: G* Sin δ = Max. 5,000 kPa

Purpose:

Complex Shear Modulus should be at a minimum to resist fatigue cracking

Contractor:

o There is arguments of this property's value

Intermediate Temperature = ((PG HT + PG LT) /2) + 4

Bending Beam Rheometer (AASHTO T 313)

FDOT Specification:

Stiffness = Max. 300 MPa / m-value = Min. 0.300

Tested at PG LT +10°C

 ΔT_c = Min. -5.0°C (ASTM D7643)

Purpose:

Determine the binder's stiffness and ability to relax at low temperatures. Measure of ductility loss of an aged binder.

- Thermal Events large temperature changes, quickly
- Looking for speed of recovery Florida gets thermal shock with hot temp. and rain quenching.
- The more negative the Delta Tc the less relaxation capability the binder has as it ages.

QUESTIONS?

