

Flexible Pavement Committee

Asphalt and Pavement Research Update

Mohab El-Hakim, Ph.D., P.E.

July 24, 2025

SMO Research Avenues

NCAT Test Track

Heavy Vehicle Simulator (HVS)

Field Trials (e.g. Test Road on US 301)

Asphalt Test Road

- **US 301 (SR 200) in Clay County.**
- Approximately 2.3 miles long.
- ■12 test sections, 1000 ft. long.

Asphalt Test Road

Southbound travel lanes:

Asphalt Test Road

Northbound travel lanes:

-Concrete Test Road

•Middle lanes:

-Diversion Lanes

■Traffic started Sept. 26, 2024.

In-place Density study - NCAT

Effect of in-place density on rutting and cracking after 20

million ESALs.

- 5 trucks
- 46 test sections
- 5 million ESALs per year
- Traffic for 2 years

In-place Density study - NCAT

- Participating in group study examining the effects of additives on rutting and cracking:
 - -Ground tire rubber (dry and wet processes).
 - Plastics (wet and dry processes).
 - –Aramid (Kevlar) fibers.
 - -Control section with no additive.

Comparison vs. SBS Control		Dry Fiber
	Stiffness	=
Mix characterization	Cracking resistance	\downarrow
	Rutting resistance	↑
Field Performance	Rutting	=
	Cracking	=

Single Lift Deep Mill/Fill - HVS

Background

 Multi-layer paving involves additional paving processes, resulting in longer lane closures and increased traffic disruptions.

Objectives

- Evaluation of constructability of the thick lift mill/fill
- Evaluation of rutting performance

Single Lift Deep Mill/Fill - HVS

In-place Density

■Temperature History

Single Lift Deep Mill/Fill – US 301 Test Road

10A	10B
Deep Lift (76-22)	Deep Lift (HP)
0.75" FC-5	0.75" FC-5
1.5" Type SPM	1.5" Type SPH HP Binder
6.0" Type SPM	6.0" Type SPH HP Binder
Existing Base	Existing Base

In-place density 95.9%

In-place density 94.8%

Crack Relief Mixture – HVS

Background

Deeper pavement cracks require milling and filling at greater depths
 which increases resurfacing costs and time

Objectives

 Evaluate the effectiveness of the crack relief asphalt mix in preventing bottom-up reflective cracking

Crack Relief Mixture – HVS

Test Section Design

1.50 in. Control
1.50 in. Control
2.5 in. Sawcut Existing Layer

Lane 1 - Section 1

1.50 in. Control
1.00 in. HP CRM
2.5 in. Sawcut Existing Layer

Lane 3 - Section 1

1.50 in. HP Mix + 20% RAP	
1.00 in. HP CRM	
2.5 in. Sawcut Existing Layer	

Lane 4 - Section 1

1.50 in. HP Mix
1.00 in. HP CRM
2.5 in. Sawcut Existing Layer

Lane 2 - Section 1

1.50 in. Control	
1.25 in. HP CRM	
2.5 in. Sawcut Existing Layer	

Lane 3 - Section 2

1.50 in. Control
1.25 in. PG 76-22 CRM
3.5 in. Sawcut Existing Layer

Lane 4 – Section 2

2.00 in. Control
1.00 in. HP CRM
2.5 in. Sawcut Existing Layer

Lane 3 - Section 3

1.50 in. Control	
1.00 in. PG 76-22 CRM	
3.5 in. Sawcut Existing Layer	

Lane 4 - Section 3

Crack Relief Mixture - US 301 Test Road

8A Reflective Cracking	8B Reflective Cracking (Control)	
0.75" FC-5	0.75" FC-5	
1.75" Type SPM	3.0" Type SPM	ava aks
1.25" CRM Existing Asphalt	Saw cut Existing Asphalt	
Existing Base	Existing Base	

RAP in HP Mixtures – HVS

Background

- Contributes to the department's efforts to improve sustainability of the State highway system
- Reduce the cost of High-Polymer (HP) asphalt mixes

Objectives

 Evaluate the impact of incorporating 20% RAP on the cracking and rutting performance of hp asphalt mixtures

- 3-inch SP 12.5 HP Mix No RAP (Control Section)
- 3-inch SP 12.5 HP Mix with 20% RAP (Experimental Section)

1.5 in. HP Mix w/o RAP

1.5 in. HP Mix w/o RAP

10.5 in. Limerock Base

12 in. Stabilized Subgrade

1.5 in. HP Mix w/ 20% RAP

1.5 in. HP Mix w/ 20% RAP

10.5 in. Limerock Base

12 in. Stabilized Subgrade

FC-5 and FC-7 Study - NCAT

FC-5 and FC-7 Study - NCAT

FC-5 and FC-7 Study – US 301 Test Road

11	12
FC-5 Only (Control)	FC-Q (FC-7) Only
1.0" FC-5	1.0" FC-Q(7)
Existing Asphalt	Existing Asphalt
Existing Base	Existing Base

Longitudinal Grooving of HMA Surface – HVS

Background

- Concerns of raveling and clogging of air voids in OGFC
- Feasibility of longitudinal grooving as an alternative to OGFC layers on high-speed arterial roadways

Objective

- Assess the impact of grooving on rutting and cracking resistance
- Assess the grooving impact on structural capacity
- Assess the long-term durability of the grooved asphalt layer

Two Grooving Patterns

- Grooving pattern #1: 3/4" spacing, 1/8" width, 1/8" depth
- Grooving pattern #2: 3/4" spacing, 1/8" width, 1/4" depth

- •Allows expedited evaluation (4-6 weeks once materials received).
- Previous process required a roadway test section and the application of six million vehicle passes (2-3 years).
- Results so far:
 - -Approved 20% RAP in limestone dense graded friction course.
 - -Efficiently approved 4 new friction aggregate types with up to 20% RAP to reduce the impact of aggregate shortage in Florida.

RAP Base Study - HVS

- Objective: Evaluate un-stabilized RAP as a base.
- **Construction:**
 - -Two 5-inch layers of RAP base.
 - -Two 2-inch layers of HMA (SP-12.5, PG 76-22 with 20% RAP).

Testing:

Testing in-progress for rutting and cracking.

	Resurface Two - 2 inch PG 76-22 PMA 20% RAP (Ndes=100)				
5	Existing Limerock Base	10-inch RAP Base			
	350ft.				

RAP Base Study - HVS

RAP Base Study - US 301 Test Road

1 Control	2 Unstabilized RAP Base	3 CCPR RAP Base	4 Emulsion Stabilized RAP Base Mixed in Place	5 Limerock/ RAP Base (50/50)	6 Limerock/ RAP Base (75/25)	7 Full-Depth Reclamation
0.75" FC-5	0.75" FC-5	0.75" FC-5	0.75" FC-5	0.75" FC-5	0.75" FC-5	0.75" FC-5
2" Type SPM	2" Type SPM	2" Type SPM	2" Type SPM	2" Type SPM	2" Type SPM	2" Type SPM
4" Type SP	4" Type SP	4" Type SP	4" Type SP	4" Type SP	4" Type SP	4" Type SP
12" Limerock	12" Unstabilized 100% RAP Base	12" CCPR RAP Base	12" Emulsion Stabilized RAP Base	12" Limerock/ RAP Base (50/50)	12" Limerock/ RAP Base (75/25)	12" FDR (Mill 6.75")

Key Recent Study:

Balanced Mix Design Benchmarking of FL Mixtures

Work performed by the University of Florida.

Benchmarked 15 mixtures at mix design and 15 mixtures at

production.

APA

Hot IDT

Rutting

Ideal RT

Key In-Progress Projects

- Two separate ongoing projects
- ■15% RAP in FC-5 mixtures (NCAT)
- ■20% RAP in High Polymer mixtures (FSU)
 - •These projects will study the impact on mixture performance (especially cracking and raveling).

Thank you. Comments/Questions?

Mohab El-Hakim, Ph.D., P.E. Asphalt Research Engineer

mohab.el-hakim@dot.state.fl.us

Office: 352-955-6632