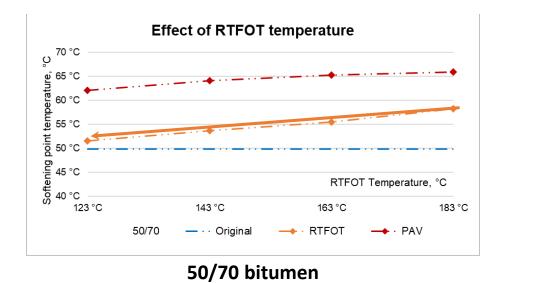
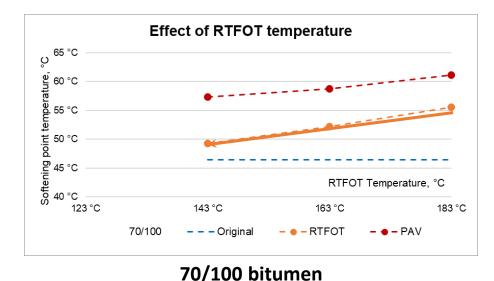
Temperature Restrictions during Binder Storage, Mix Production

<u>Primary Purpose</u>: to avoid damaging the asphalt binder by excessively aging it during storage and mixing

Potential Damage:


- Embrittlement at intermediate and low temperatures, leading to premature cracking and raveling
- Damage to polymer chains, potentially affecting the resistance of the binder to cracking


Other Issues:

 Modified binders, especially High Polymer, can continue to crosslink when stored at excessive temperatures, making them more viscous and difficult to handle

Effect on softening point temperature

- Overall increasing RTFOT temperature increased change of properties
 - Increase by +3°C with a 20°C increase in RTFOT temperature
- After PAV, somehow less difference vs. RTFOT temperature
 - 1-2°C increase each 20°C RTFOT temperature

Polymer Modified Binders

- We recently tested samples of PG76-22 and HP to see how DSR qualities at high temperature were affected by RTFO temperature
 - RTFO conditioning at 163, 175 and 185°C (325, 347 and 365°F)
- Shear modulus (G*) increased with increasing conditioning temperature for all samples
- Other parameters (δ, MSCR criteria) didn't consistently change with increased conditioning temperature

NCHRP 648-Mixing and Compaction Temperatures of Asphalt Binders in Hot-Mix Asphalt (West, Watson, Turner & Casola)

- "This report identifies improved test methods for determining laboratory mixing and compaction temperatures of modified and unmodified asphalt binders."
 - Included a draft AASHTO Standard for "Steady Shear Flow and Phase Angle Methods."
- Research included evaluation of aging using "Smoke and Emissions Protocol (SEP)", where:
 - 50 gram samples were aged for two hours at 130, 150, 170 and 190°C
 - During aging, mass and opacity of emissions were measured, samples were tested to measure binder qualities related to performance

General Trends after SEP aging at different temperatures

- Opacity, mass loss increased with increasing temperature
- Increased stiffness at intermediate temperature
- Inconsistent effect on m-value (low temperature relaxation)

FDOT Specifications-Temperatures

- **320-3.3 Asphalt Binder**: Meet the following requirements: 320-3.3.1 Transportation: Deliver the asphalt binder to the asphalt plant at a **temperature not to exceed 370°F**, and equip the transport tanks with sampling and temperature sensing devices meeting the requirements of 300-3.2.
- 320-3.3.2 Storage: Equip asphalt binder storage tanks to heat the liquid asphalt binder to the temperatures required for the various mixtures. Heat the material in such a manner that no flame comes in contact with the binder. Heat or insulate all pipe lines and fittings. Use a circulating system of adequate size to ensure proper and continuous circulation during the entire operating period. Locate a thermometer, reading from 200 to 400°F, either in the storage tank or in the asphalt binder feed line. Maintain the asphalt binder in storage within a range of 230 to 370°F in advance of mixing operations.
- **320-6.3 Mix Temperature:** Produce the mixture with a temperature within the master range as defined in Table 320-2.

Tabl	e 320-2
Mix Temperature M	laster Range Tolerance
Location	Acceptable Temperature Tolerance
Plant	Mixing Temperature ±30 F
Roadway (mix in truck)	Compaction Temperature ±30°F
Roadway (mix in windrow)	Compaction Temperature +30°F, -40°F

Table 320-3					
Mix Temperature Tolerance from Verified Mix Design					
Any Single Measurement ±25°F					

Sampling of agencies

Agency	Temperature Requirement(s)
NYSDOT	Binder ≤ 350°F, Mix delivery ≤ 325°F
Iowa DOT	Binder: 260° - 330°F, Mix production: 225° - 330°F
Alabama DOT, LaDOTD	Mixture ≤ 350°F
Arizona DOT	Mixture ≤ 325°F (PG TR+)
Texas DOT	Binder ≤ 350°F, Mixture-table below

Table 13 Maximum Production Temperature

High-Temperature Binder Grade ¹	Maximum Production Temperature
PG 64	325°F
PG 70	335°F
PG 76	345°F

 The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

The Shell Bitumen Handbook (6th Ed.)

- For Shell Cariphalte[®] Polymer Modified Bitumen:
 - Short-term storage (3-4 days): around 165-175°C (329-347°F)
 - Long-term storage (up to 2 weeks): below 140-160°C (284-320°F)
 - Very long-term storage: below 100°C (212°F)

			Typical Asphalt Bi	nder Temperatur	es		
			HMA Plant Asphalt Tank HMA Plant Mixing		ant Mixing		
	Binder Grade PG 46-28 PG 46-34 PG 46-40		Binder Grade Storage Temperatur		Tempera	ature (°F)	
			Range	Midpoint	Range	Midpoint	
			PG 46-34 260-290	275 275 275	240-295	264 264 264	
	Р	G 52-28	260-295	278	240-300	270	
PG 76-22 315-3		-330	322		285-335	310	
PG 76-28		310-	-325	318		280-330	305
PG 82-22		315-	-335	325		290-340	315

PG 70-28	295-320	308	275-325	300	
PG 76-22 PG 76-28	315-330 310-325	322 318	285-335 280-330	310 305	
PG 82-22	315-335	325	290-340	315	

Best Management Practices to Minimize Emissions During HMA Construction, EC 101, Asphalt Pavement Environmental Council (National Asphalt Pavement Association, Asphalt Institute, and State Asphalt Pavement Associations), April 2000.