

Asphalt Research Update Asphalt Conference

Greg Sholar December 1, 2021

Outline

- Top three projects in the following categories
 - -Completed
 - -In progress
 - Upcoming projects

— FDOT — Completed #1 Road Worms (a.k.a. Blisters or Ripples)

Florida Department of Transportation

- Previously researched in 1972, 1990, 2011 for individual projects.
- Consensus is that moisture in the asphalt pavement (or sometimes granular base/subgrade) is vaporizing due to heat.

Heat causes vapor to expand which pushes up small ripples on the pavement surface

4 The blisters rupture or crack to allow vapor to escape. The ripples are "ironed out" in the wheel-paths by traffic.

- Applied Research Associates (ARA) performed the research.
- 5 projects
- ■3 Dense FC
- 2 OGFC

- Performed extensive field and lab testing on granular and asphalt layers.
- Control and worms sections for each project.
- Conclusions:
 - Lower bond strength between upper two asphalt layers.
 - –High air voids, especially at bottom of top layer and top of 2nd layer.
 - -Segregation, especially at bottom of top layer.
 - -Granular layers not suspected.

Completed #2 Increased RAP in PG 76-22 Structural Layers

- Max limit was 20% RAP for structural layers containing PG 76-22 binder.
- Could this amount be increased to 25 or 30% without affecting cracking?
- The University of Florida performed the research.

- Eight RAP sources selected out of twelve sampled.
 - -Covered a broad range of RAP binder stiffness and gradation.

Used complex tests focused on cracking.

Mortar testing (Passing #16 sieve)

Mixture testing

■The interstitial components in the interstitial volume affect

cracking the most.

Results:

- -Coarse RAP performs better than fine RAP.
- Less stiff RAP performs better than stiffer RAP.
- -Gradation more important than RAP binder stiffness. Why? Because of IC/IV.

Mixture with coarse RAP

Mixture with fine RAP

Implemented in January 2021 Specifications.

Table 334-3				
Allowable RAP Percentages ¹ in Type SP Structural Mixtures with PG 76-22 Asphalt Binder				
		Coarse RAP	Intermediate RAP	Fine RAP
Gradation % Passing #16 Sieve ²		≤ 40%	$> 40\%$ to $\le 50\%$	> 50%
$PG_{HT}^3 > 100.0^{\circ} C$	Allowable RAP	≤ 25%	≤ 20%	≤ 20%
$PG_{HT}^{3} \le 100.0^{\circ} C$	Percentage	≤ 30%	≤ 25%	

Notes:

- 1. RAP aggregate by weight of total aggregate or RAP binder by weight of total binder.
- 2. RAP gradations based on ignition oven extraction of RAP material in accordance with FM 5-563.
- 3. PG_{HT}: asphalt binder high temperature continuous performance grade of RAP in accordance with Section 916.

Hydrated Lime

- Examined the influence of anti-strip additives on the <u>durability and</u> moisture susceptibility of granite-based OGFC (FC-5) mixtures.
- Research performed by the National Center for Asphalt Technology (NCAT) in Auburn, AL.
- Examined Georgia and Nova Scotia Granite.
- Examined the following four conditions:
 - -1% lime (current spec).
 - 1% lime and 0.5% liquid anti-strip.
 - 1.5% lime.
 - 1.5% lime and 0.5% liquid anti-strip.

Specimens were conditioned to simulate the long-term exposure to water infiltration, vapor diffusion, and thermal and ultraviolet oxidation.

Hamburg Rut Tester

Binder Bond Strength

Cantabro

Indirect Tensile Strength

Results:

- -Georgia granite 1% hydrated lime and 0.5% liquid anti-strip additive performed the best and had the best cost-benefit ratio.
- Nova Scotia granite 1.5% hydrated lime and 0.5% liquid anti-strip additive performed the best and had the best cost-benefit ratio.
- Implemented in the July 2021 specifications.

In Progress #1 Aramid Fibers (two major brands)

Blend of Aramid and Polyolefin Fibers

- Being studied at the State Materials Office Test Track, a field test section (SR-200 in Dist. 2), and in SMO lab.
- •Will it help rutting and/or cracking resistance?
- Is it worth the cost increase?
- Potential outcomes:
 - -Fibers allowed as an alternate to PG 76-22.
 - -PG 76-22 PMA + fibers used as an alternate to HP binder.
 - -HP binder + fibers used in extreme situations.

In Progress #2

Performance Comparison between SP-9.5 and SP-12.5 (TTI)

SP-9.5

SP-12.5

Performance Comparison between SP-9.5 and SP-12.5 (TTI)

•Current specification restrictions for SP-9.5 mixtures:

- Do not use on Traffic Level D and E applications.
- -Limited to the top two structural layers, two layers maximum.

Project objectives:

- –Compare the performance (rutting, cracking, and durability) between SP-9.5 and SP-12.5 mixtures.
- -Determine if SP-9.5 mixtures are at least equivalent to SP-12.5 mixtures.

Potential outcome:

The restrictions above are removed to provide more flexibility.

In Progress #3

OGFC for Suburban Environments (NCAT)

OGFC for Suburban Environments (NCAT)

OGFC for Suburban Environments (NCAT)

- Project objectives:
 - -Reduce instances of premature raveling while maintaining the safety benefits of FC-5 (reduced hydroplaning and water spray).
- Researching modified OGFC and SMA mix types.

OGFC for Suburban Environments (NCAT)

Potential outcome:

–A new mix type, which is more durable but also safe, to be used in suburban areas that qualify for FC-5.

Upcoming #1 RAP Binder Contribution to the Mixture

- •FDOT assumes all of the binder in the RAP is activated, whereas most research says it is not.
 - -Therefore, the current FDOT RAP binder contribution factor is 100%.
- **GDOT** used a 75% factor from 2012 to 2019.
- •GDOT switched to a 60% factor in 2019.
- •GDOT adds extra binder (equal to the 40% of inactive RAP binder) back into the mixture.
- Provides increased crack resistance and durability.

RAP Binder Contribution to the Mixture

- FDOT's #1 pavement distress is cracking.
- •Adding more binder will decrease cracking, but how much will it increase rutting?

RAP Binder Contribution to the Mixture

Objectives:

- -Determine what value FDOT should use for the RAP contribution factor.
- -Evaluate mixtures for rutting and cracking resistance.
- -Suggest how to implement this during mix design and production.

Upcoming #2

Review of Protocols for Evaluating Defective Material

- •Will evaluate the Department's practices for evaluating defective material.
- Will place emphasis on:
 - -Rutting for low air void dense graded mix.
 - -Durability for low binder content FC-5.
- The APA rutting test and Cantabro durability tests will be utilized, among others.
- •Will evaluate in-place sections where defective material was left in place.

Upcoming #3 - Alternative Friction Overlays

- •Will explore asphalt-based alternatives to High Friction Surface Treatment (epoxy based).
- ■Will research FC-4.75, FC-9.5, FC-5, and at least one asphalt-based surface treatment to include bauxite or equivalent.

Thank you.

Questions?