Evaluating Nearly 15 Years of Volumetric Asphalt Mix Designs for an Entire State DOT Asphalt Contractors Association of Florida 2021 Asphalt Conference and Expo Nov 30th – Dec 1st, 2021 Ben C. Cox, PhD, PE Research Civil Engineer, US Army Corps of Engineers, ERDC benjamin.c.cox@usace.army.mil #### **Acknowledgements** - Jonathan Easterling *Materials Engineer & Plant Manager, Huey P. Stockstill, LLC* - Griffin Sullivan State Materials Engineer, Mississippi DOT - Alex Middleton Assistant State Research Engineer, Mississippi DOT - Isaac Howard Professor, Mississippi State University - Objective: present trends from a statewide database of all 1,452 volumetric mix designs approved by Mississippi DOT between 2005 and 2018 - Data highlights several issues and unintended consequences of exclusive (or near-exclusive) reliance on volumetrics - Data builds a case for reintegrating mechanical tests #### **Motivations for This Exercise** - Asphalt industry strained by multiple factors in recent years - Increased asphalt binder costs - Limited funding - Pressure to recycle - Deteriorating pavement networks - Mix design should account for market in which it is used - Today's market much different than when current volumetric mix design practices were developed #### **Motivations: 40-Year Trends** Market now is very different than when Superpave was developed and implemented ### **Motivations: Deteriorating Pavements** - Mississippi DOT pavement condition ratings trending wrong direction - Most notable factor: cracking (dry mixes) # SACAF #### Mix Design Database - 1,452 MDOT approved Superpave mix designs from 2005 to 2018 - Database quick-look - Mix Types: DGA (1,308), SMA (84), other (60) - NMAS: 19 mm (381), 12.5 mm (403), 9.5 mm (475), other (49) - N_{des}: 50 gyr (468), 65 gyr (393), 85 gyr (447) - Properties - General classification (mix type, NMAS, etc.) - Aggregates (gradation, gravities, etc.) - Asphalt binder (source, PG grade, etc.) - Mixtures (gravities, design volumetrics, etc.) # Mix Design Database Observations #### Trends discussed in five categories - 1. VMA - 2. G_{sb} and *Abs* - 3. RAP Content - 4. N_{des} - 5. Coarse vs. Fine Gradations #### 1. VMA Trends - 80% of all DGA and SMA mixes are within 0.6% of minimum VMA (VMA_{min}) - Skew towards VMA_{min} indicates mix optimization based on VMA (i.e. VMA controls asphalt content) - VMA will generally be as close to VMA_{min} as reasonably possible to maintain an economical mix #### **MDOT VMA Levels** | NMAS
(mm) | VMA _{min}
(%) | |--------------|---------------------------| | 19.0 | 13.0 | | 12.5 | 14.0 | | 9.5 | 15.0 | # 1. VMA Dependency on G_{sb} - Concern with VMA trend is that VMA depends on G_{sb} (inherently operator dependent and variable) - AASHTO d2s for 50/50 coarse/fine agg. blend: 0.052 - High d2s means a measured G_{sb} and true G_{sb} can be the "same" by d2s standards even though they are quite different - Primary concern is with inflated G_{sb} values (associated with aggregate dried past SSD condition) # 1. VMA Dependency on G_{sb} Inflating G_{sb} increases <u>calculated</u> VMA; if gradation is designed so that <u>calculated</u> VMA just meets VMA_{min}; <u>actual</u> VMA (and V_{be}) will be below minimum requirements # 1. VMA Dependency on G_{sb} In context of MDOT database trends: | G _{sb} Inflation
Amount | % Mixes where VMA _{calc} may pass but VMA _{actual} fails | Corresponding Reduction in P _{b, des} | |-------------------------------------|--|--| | 1/3 d2 <i>s</i> limit | 80% | Up to 0.3% | | d2s limit | 99% | Up to 0.8% | G_{sb} variability, if ignored or exploited, allows VMA manipulation and can easily result in dry mixes #### 2. G_{sb} and Abs: Practices by State - Numerous differences among states regarding handling of G_{sb} - G_{sb} is generally not monitored once mix design is established - Some states indirectly account for G_{sb} using G_{se} -to- G_{sb} corrections; this requires an accurate initial G_{sb} , accurate P_b measurements, and constant P_{ba} | | | MDOT | Other SEAUPG States | |------------|--|------------------------------------|---| | Aggregate | P ₂₀₀ for AASHTO T85 | Washed | Washed (4), Unwashed (3), Not specified (6) | | | G _{sb} test frequency | At mix design | At mix design (10), 1 per year (2), 1 per 2 weeks (1) | | | Tested by | Contractor | Contractor (10), Contractor and/or DOT/approved lab (3) | | RAP | Max allowed | 30% | 30% (7), 35% (3), others | | | Gravity for VMA calculation | G _{sb} from
extraction | G_{se} (5), Estimate G_{sb} from G_{se} (3), Either (4), G_{sb} from extraction (1) | | Production | G _{se} -to-G _{sb} correction for VMA calculation | No | No (10), Yes (3) | | A | | | | ## 2. G_{sb} and *Abs*: Evaluating Reasonableness - Large d2s limit and typical G_{sb} practices open door for high variability with G_{sb} values - Is it possible to tell if G_{sb} might be inflated? - Reported VMA will likely seem reasonable - P_b may not seem unreasonable unless really low - Low P_{ba} could be due to low-absorption aggregate or inflated G_{sb} – may not be obvious - P_{ba}-to-Abs rules of thumb are sometimes used to check G_{sb} - Relationship between P_{ba} and Abs exists on average (less reliable for any one specific case due to scatter) # 2. G_{sb} and *Abs*: Evaluating Reasonableness - P_{ba}-to-*Abs* rules have limitations because inflating G_{sb} deflates *Abs* - Low P_{ba} values will not be obvious in comparison to deflated *Abs* values (i.e. rule of thumb may not pinpoint G_{sb} problem) #### 3. RAP Content - Virgin binder demand decreases with RAP content - Absorbed asphalt does not change in any meaningful way - These are intuitive outcomes #### 3. RAP Content - Intuitively, total binder demand would increase with RAP content, all other factors being equal - In practice, V_{be} actually drops (0.45% V_{be} , or 0.2% P_{be} , at 30% RAP) - Unintended consequence concerning in light of stiffer RAP binder - Issue would grow if G_{se} was used in place of G_{sb} for RAP ## 4. Decreasing N_{des} Level - A common suggestion to increase asphalt content is reduce N_{des} - This works if all other factors held constant - Less compaction \rightarrow looser agg skeleton \rightarrow higher VMA \rightarrow higher V_{be} Rule of Thumb: 30 gyr reduction = 1% VMA = 0.4% P_{be} # 4. Decreasing N_{des} Level - In practice, changing N_{des} has little impact - For 35 gyr reduction (85 to 50), V_{be} increases about 0.3% on average - This equates to 0.14% P_{be} increase, which is miniscule compared to the cited 0.4% P_{be} increase # 4. Decreasing N_{des} Level - Changing N_{des} has little impact because nothing prevents mix designer from adjusting aggregate blend and/or gradation - Since VMA_{min} did not change, mix designer can bring VMA back toward VMA_{min} by filling voids with aggregate (more economical than binder) - MDOT database illustrates that gradations shift toward max density line in practice #### 5. Coarse vs. Fine Gradations Common misconception is that finer gradations could be used to combat dry mixes • Finer gradations have more surface area, so the thought is that binder demand is greater and asphalt content will go up Deviation from PCS Control Point (%) Distribution of Coarse vs Fine for MDOT Mixes #### 5. Coarse vs. Fine Gradations - In practice, gradation type has no impact - V_{be} is 10.4 vs 10.5%; P_{be} change of 0.04% (basically no difference) - VMA_{min} criteria did not change, so asphalt content did not change - Data from practice across an entire state supports numerous other studies consisting of smaller datasets (e.g. may only evaluate one factor at a time) - Volumetric-only mix design is not fully capable of dealing with present-day mixes - Mechanical tests are needed, perhaps more now than when they were sought during SHRP ### **Questions?** Ben Cox Benjamin.c.cox@usace.army.mil 601-634-2376