

Evaluating Nearly 15 Years of Volumetric Asphalt Mix Designs for an Entire State DOT

Asphalt Contractors Association of Florida 2021 Asphalt Conference and Expo Nov 30th – Dec 1st, 2021

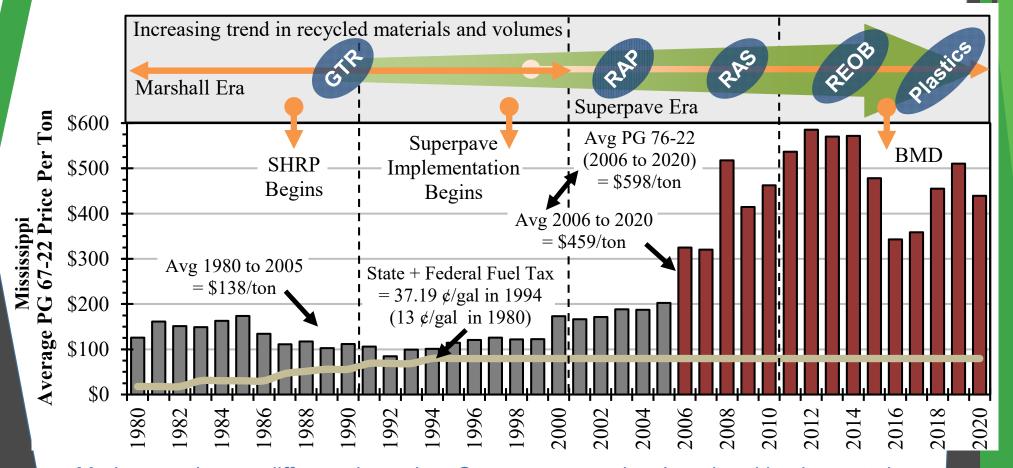
Ben C. Cox, PhD, PE

Research Civil Engineer, US Army Corps of Engineers, ERDC benjamin.c.cox@usace.army.mil

Acknowledgements

- Jonathan Easterling
 Materials Engineer & Plant Manager, Huey P. Stockstill, LLC
- Griffin Sullivan
 State Materials Engineer, Mississippi DOT
- Alex Middleton
 Assistant State Research Engineer, Mississippi DOT
- Isaac Howard Professor, Mississippi State University

- Objective: present trends from a statewide database of all 1,452 volumetric mix designs approved by Mississippi DOT between 2005 and 2018
- Data highlights several issues and unintended consequences of exclusive (or near-exclusive) reliance on volumetrics
- Data builds a case for reintegrating mechanical tests


Motivations for This Exercise

- Asphalt industry strained by multiple factors in recent years
 - Increased asphalt binder costs
 - Limited funding
 - Pressure to recycle
 - Deteriorating pavement networks
- Mix design should account for market in which it is used
- Today's market much different than when current volumetric mix design practices were developed

Motivations: 40-Year Trends

Market now is very different than when Superpave was developed and implemented

Motivations: Deteriorating Pavements

- Mississippi DOT pavement condition ratings trending wrong direction
- Most notable factor: cracking (dry mixes)

SACAF

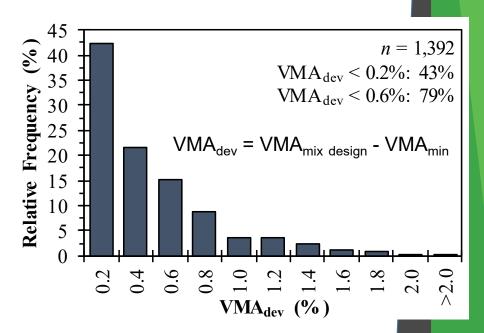
Mix Design Database

- 1,452 MDOT approved Superpave mix designs from 2005 to 2018
- Database quick-look
 - Mix Types: DGA (1,308), SMA (84), other (60)
 - NMAS: 19 mm (381), 12.5 mm (403), 9.5 mm (475), other (49)
 - N_{des}: 50 gyr (468), 65 gyr (393), 85 gyr (447)
- Properties
 - General classification (mix type, NMAS, etc.)
 - Aggregates (gradation, gravities, etc.)
 - Asphalt binder (source, PG grade, etc.)
 - Mixtures (gravities, design volumetrics, etc.)

Mix Design Database Observations

Trends discussed in five categories

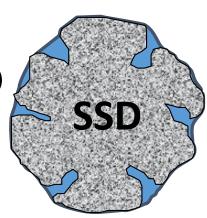
- 1. VMA
- 2. G_{sb} and *Abs*
- 3. RAP Content
- 4. N_{des}
- 5. Coarse vs. Fine Gradations



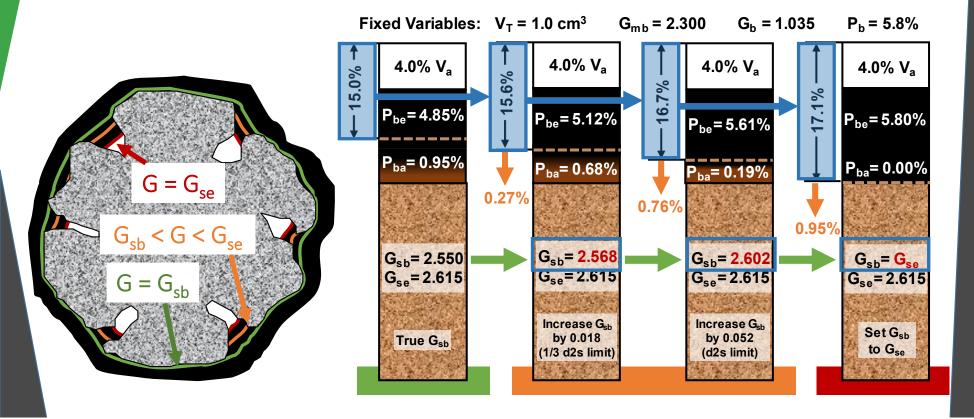
1. VMA Trends

- 80% of all DGA and SMA mixes are within 0.6% of minimum VMA (VMA_{min})
- Skew towards VMA_{min} indicates mix optimization based on VMA (i.e. VMA controls asphalt content)
- VMA will generally be as close to VMA_{min} as reasonably possible to maintain an economical mix

MDOT VMA Levels

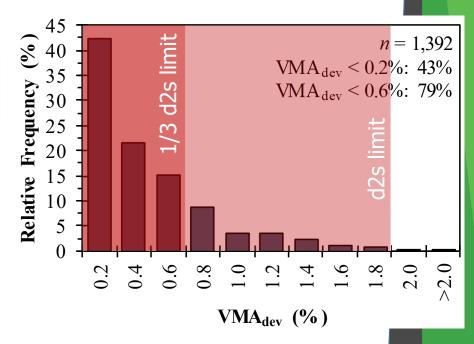

NMAS (mm)	VMA _{min} (%)
19.0	13.0
12.5	14.0
9.5	15.0

1. VMA Dependency on G_{sb}


- Concern with VMA trend is that VMA depends on G_{sb} (inherently operator dependent and variable)
- AASHTO d2s for 50/50 coarse/fine agg. blend: 0.052
- High d2s means a measured G_{sb} and true G_{sb} can be the "same" by d2s standards even though they are quite different
- Primary concern is with inflated G_{sb} values (associated with aggregate dried past SSD condition)

1. VMA Dependency on G_{sb}

Inflating G_{sb} increases <u>calculated</u> VMA; if gradation is designed so that <u>calculated</u> VMA just meets VMA_{min}; <u>actual</u> VMA (and V_{be}) will be below minimum requirements



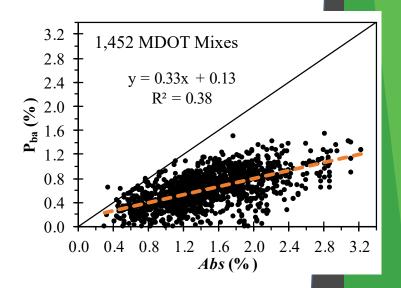
1. VMA Dependency on G_{sb}

In context of MDOT database trends:

G _{sb} Inflation Amount	% Mixes where VMA _{calc} may pass but VMA _{actual} fails	Corresponding Reduction in P _{b, des}
1/3 d2 <i>s</i> limit	80%	Up to 0.3%
d2s limit	99%	Up to 0.8%

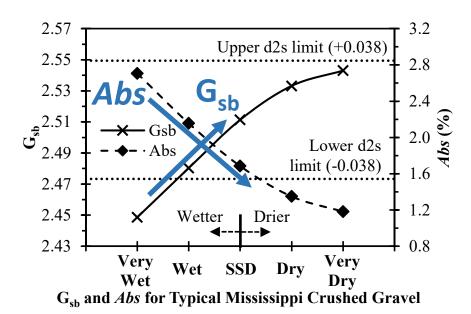
 G_{sb} variability, if ignored or exploited, allows VMA manipulation and can easily result in dry mixes

2. G_{sb} and Abs: Practices by State

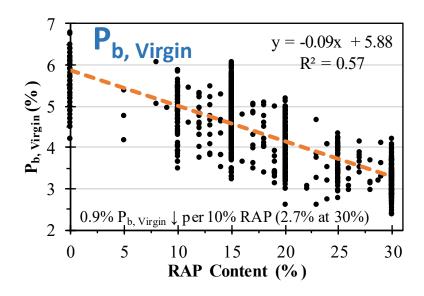

- Numerous differences among states regarding handling of G_{sb}
- G_{sb} is generally not monitored once mix design is established
- Some states indirectly account for G_{sb} using G_{se} -to- G_{sb} corrections; this requires an accurate initial G_{sb} , accurate P_b measurements, and constant P_{ba}

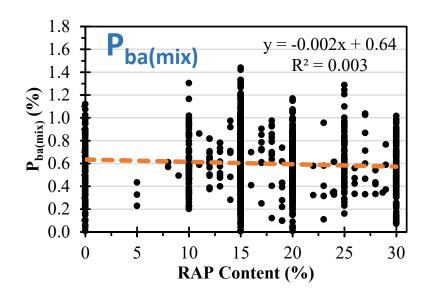
		MDOT	Other SEAUPG States
Aggregate	P ₂₀₀ for AASHTO T85	Washed	Washed (4), Unwashed (3), Not specified (6)
	G _{sb} test frequency	At mix design	At mix design (10), 1 per year (2), 1 per 2 weeks (1)
	Tested by	Contractor	Contractor (10), Contractor and/or DOT/approved lab (3)
RAP	Max allowed	30%	30% (7), 35% (3), others
	Gravity for VMA calculation	G _{sb} from extraction	G_{se} (5), Estimate G_{sb} from G_{se} (3), Either (4), G_{sb} from extraction (1)
Production	G _{se} -to-G _{sb} correction for VMA calculation	No	No (10), Yes (3)
A			

2. G_{sb} and *Abs*: Evaluating Reasonableness


- Large d2s limit and typical G_{sb} practices open door for high variability with G_{sb} values
- Is it possible to tell if G_{sb} might be inflated?
 - Reported VMA will likely seem reasonable
 - P_b may not seem unreasonable unless really low
 - Low P_{ba} could be due to low-absorption aggregate or inflated G_{sb} – may not be obvious
- P_{ba}-to-Abs rules of thumb are sometimes used to check G_{sb}
- Relationship between P_{ba} and Abs exists on average (less reliable for any one specific case due to scatter)

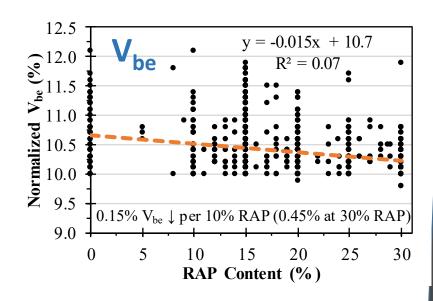
2. G_{sb} and *Abs*: Evaluating Reasonableness


- P_{ba}-to-*Abs* rules have limitations because inflating G_{sb} deflates *Abs*
- Low P_{ba} values will not be obvious in comparison to deflated *Abs* values (i.e. rule of thumb may not pinpoint G_{sb} problem)

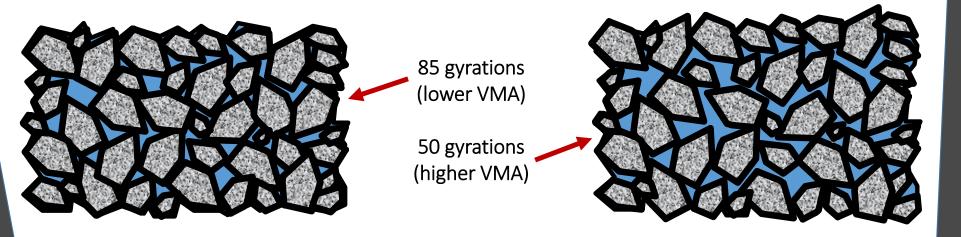


3. RAP Content

- Virgin binder demand decreases with RAP content
- Absorbed asphalt does not change in any meaningful way
- These are intuitive outcomes

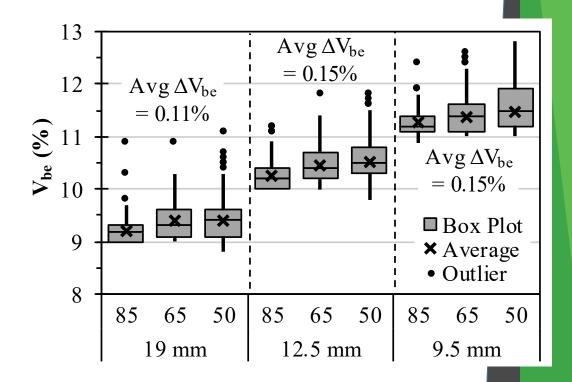


3. RAP Content


- Intuitively, total binder demand would increase with RAP content, all other factors being equal
- In practice, V_{be} actually drops (0.45% V_{be} , or 0.2% P_{be} , at 30% RAP)
- Unintended consequence concerning in light of stiffer RAP binder
- Issue would grow if G_{se} was used in place of G_{sb} for RAP

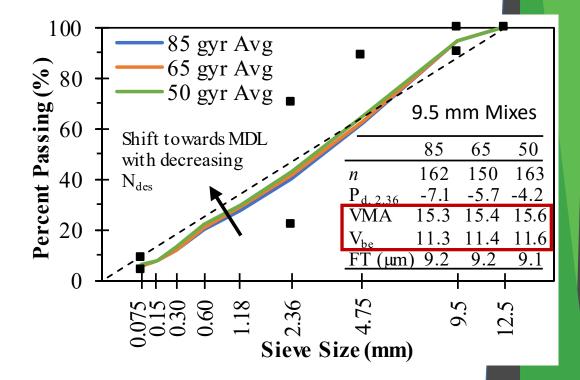
4. Decreasing N_{des} Level

- A common suggestion to increase asphalt content is reduce N_{des}
- This works if all other factors held constant
- Less compaction \rightarrow looser agg skeleton \rightarrow higher VMA \rightarrow higher V_{be}



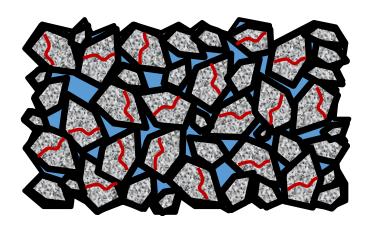
Rule of Thumb: 30 gyr reduction = 1% VMA = 0.4% P_{be}

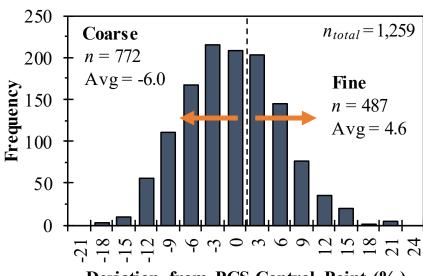
4. Decreasing N_{des} Level


- In practice, changing N_{des} has little impact
- For 35 gyr reduction (85 to 50),
 V_{be} increases about 0.3% on average
- This equates to 0.14% P_{be} increase, which is miniscule compared to the cited 0.4% P_{be} increase

4. Decreasing N_{des} Level

- Changing N_{des} has little impact because nothing prevents mix designer from adjusting aggregate blend and/or gradation
- Since VMA_{min} did not change, mix designer can bring VMA back toward VMA_{min} by filling voids with aggregate (more economical than binder)
- MDOT database illustrates that gradations shift toward max density line in practice

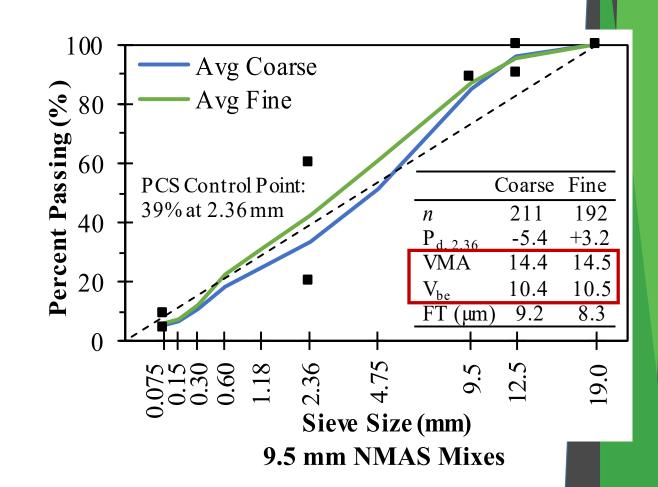



5. Coarse vs. Fine Gradations

 Common misconception is that finer gradations could be used to combat dry mixes

• Finer gradations have more surface area, so the thought is that binder

demand is greater and asphalt content will go up



Deviation from PCS Control Point (%)
Distribution of Coarse vs Fine for MDOT Mixes

5. Coarse vs. Fine Gradations

- In practice, gradation type has no impact
- V_{be} is 10.4 vs 10.5%;
 P_{be} change of 0.04%
 (basically no difference)
- VMA_{min} criteria did not change, so asphalt content did not change

- Data from practice across an entire state supports numerous other studies consisting of smaller datasets (e.g. may only evaluate one factor at a time)
- Volumetric-only mix design is not fully capable of dealing with present-day mixes
- Mechanical tests are needed, perhaps more now than when they were sought during SHRP

Questions?

Ben Cox Benjamin.c.cox@usace.army.mil 601-634-2376