OGFC Durability

ACAF 2024 Florida Asphalt Expo and Conference Orlando, FL December 18th, 2024 Grover Allen, Ph.D., P.E.

Basic Steps of Asphalt Mix Design

How to make an OGFC mixture – Aggregate Structure

Heitzman 2013

Aggregate Sieve Size	SP-12.5 (Dense)	FC-5 (OGFC)	
12.5-mm (1/2-in)	90-100	85-100	
9.5-mm (3/8-in)	90	60-75	
4.75-mm (No. 4)		15-25	← Break Point
2.36-mm (No. 8)	28-58	5-10	sieve
75-μm (No. 200)	2-10	2-5	

How to make an OGFC mixture

Open Graded Pavements: A Primer with Emphasis on Water Quality Benefits. TRB (2019)

Dense Graded Mix

- 4% Air Voids
- 4.5-6% Asphalt

Open Graded Mix (OGFC)

- 15-20% Air Voids
- 5.5-8% Asphalt

Why are OGFCs Important?

OGFC Pavements:

Save lives and provide better driving experience

- Reduce splash, spray, hydroplaning in wet conditions (5-10%)
- Much quieter, Reduce headlight glare, Resist rutting
- In use since 1944
- **FDOT** requires OGFC on all interstates; OGFC represents approximately 50% of FDOT-maintained lane miles in FL

FDOT OGFC (FC-5) Specification Requirements and "Typical" Properties (2025 Standard Spec Book – Section 337)

Mix Requirements	SP-12.5 (Dense)	FC-5 (OGFC)
Draindown (AASHTO T 305)		Visual (0.3% Typical)
Permeability		>1000 mL/h (Typical)
Aged Cantabro (AASHTO T 401)		20% max (Internal)
Air Voids (AASHTO T 331)	4%	15%-20% (Typical)
Lift Thickness (Typical), in.	2.0-3.0	0.75

Materials/Additives	SP-12.5 (Dense)	FC-5 (OGFC)
Hydrated Lime (Granite)	1%	1%
LASA (FM 1-T 283)	As required	As required
Polymers (916-2.1)		Required (PG 76-22)
Fibers (337-2.7.1)		0.3 - 0.4%
RAP allowance	YES	NO

Examples of Poor OGFC Durability in the Southeast (MS)

Expected life (Durability):

DG Surface: ~15-20 years

OGFC: ~6-12 years

Florida FC-5: >12 years

Problems Associated with OGFC – Functionality

NCAT Test Track Data

How to Improve OGFC – Design

1. Increase Binder Content/Increase Baghouse Fines (BHF):

Mortar distribution – (a) OGFC (b) dense mix

Jing et al. (2019). Lab and Field Aging Effect on Bitumen Chemistry and Rheology in Porous Asphalt Mixture. NCHRP 1-55 Report 877. Performance-based mix design for porous friction course

2. Decrease Air Voids:

Abohamer et al. (2023). Effects of AV Content, Crumb Rubber, and pozzolonic fillers on OGFC lab performance.

How to Improve OGFC – Materials

C=O + S=O Aging Index

Glover-Rowe Aging Index

Reduced aging rate by 70-90%!

Rodriguez et al. (2019). Rheological and chemical evaluation of aging resistant binder technologies.

How to Improve OGFC – Construction

1. Good Bond:

Performance and Cost Effectiveness of Permeable Friction Course Pavements – FHWA/TX-12/0-5836-2, TTI, 2013

2. Proper laydown temp:

1 Inch Lift 50°F Air, Surface Temp Mix Delivery temp - 300°F 7 minutes to complete compaction operations

3 Inch Lift 50°F Air, Surface Temp Mix Delivery temp - 300°F 44 minutes to complete compaction operations

Gierhart. Climate Considerations for Thin-lift Overlays.

Stricter air temp requirements during construction?

"By decreasing the overlay thickness, the importance of tack coat cohesive characteristics increases."

- FHWA/TX-18/0-6857-1

<u>Less important</u> than <u>preventing removal!</u>

"It is recommended that a **heavier tack coat** be used to **improve the performance of OGFC**." – NCAT Report 12-10.

Bond Requirements	12.5-mm Dense	12.5-mm OGFC
Tack Coat (402.03.1.2), gal/sy	0.05-0.10	0.10-0.14

OGFC Maintenance: Rejuvenating Fog Seal

Evaluation of Rejuvenating Fog Seals

Complex Modulus & Complex Viscosity @ 60

C After 4 weeks - S3, Mississippi DOT

A Costin for ement
A Costin for ement
A Costin for ement
in Lee

S3 Control

S4 Control

S3 Control

S4 Control

S4 Control

S4 Control

S5 Control

S6 Control

S7 Contr

Application rate: 0.05 - 0.12 gal/sy

PCI Improved with Reclamite over 20 years - in Pink
Unimproved average PCI decline over 20 years - in brown
Reclamite applied - year 3

Corrective Asphalt Materials

How to Improve OGFC – Functionality

1. Thicker lift:

Figure 4.13	2009 Mixture Field Permeability Results
	NCAT Report 12-10

SP-12.5 (Dense)	SP-12.5 (Dense)	FC-5 (OGFC)
Lift Thickness (Typical), in.	2.0-3.0	0.75

Summary

asphalt institute

Why do we build OGFC Pavements despite known lower durability?

- Save lives and provide a better driving experience.
- Can we improve durability and functionality?

Yes!

Pre-construction

- Design Higher AC / Higher BHF / Lower Voids / Thicker lifts
- Materials HP / More age-resistant binders

Construction

Prioritize good bond / Avoid rapid cooling

Post-Construction

Maintenance and Preservation

ASPHALT Magazine Article (July 2024)

tman and Kline (2012). Comparison of Mix Design Me Porous Asphalt Mixtures.

urnal of Materials in Civil Engineering. Vol 24; 11.

What is happening with our OGFCs?

PAVING

JULY 16, 2024 | DR. GROVER ALLEN, PH.D., P.E., DR. BUZZ POWELL, PH.D., P.E.

Four areas of focus for longer-lasting open-grade friction course pavements Basic asphalt mix design teaches us that the following steps are required to ensure a... **READ MORE**

Discussion?

