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Abstract  
Introduction: Several gait analysis techniques have been used to study prosthetic gait for many 
years. Previous studies have been limited by small sample sizes and restricted to laboratory 
settings. Recent advances in computer vision have led to significant progress in the ability to 
analyze video and extract human movements, an approach called markerless pose estimation. 
The use of markerless pose estimation techniques on prosthetic users has not been widely 
studied. The goal of this study was to determine the possibility and identify challenges of using 
markerless pose estimation techniques in conjunction with a custom gait transformer to 
perform gait analysis in prosthetic users in a clinical setting.  
 
Subjects: 21 individuals with lower limb amputations were recruited and provided written 
informed consent. Level of amputation and prosthetic componentry varied between subjects.  
 
Procedures: Data was collected during normal prosthetic and/or physical therapy visits at 
Shirley Ryan AbilityLab. Custom wearable sensors were placed on shank and thigh of the 
prosthetic limb. Video and sensor data was obtained through a custom app on an Android cell 
phone as mobility activities occurred naturally throughout the clinical visit. Black tape was 
placed on the floor at 10-meter distances to calculate ground truth walking velocity.  
 
Data Processing: Processing of the videos was performed using a custom gait analysis pipeline. 
The pipeline has three main steps: subject identification, 2D keypoint detection, and gait 
transformer outputs. The gait transformer has been trained to output gait event timing and 
spatio-temporal gait parameters. Ground truth cadence was measured from the wearable 
sensors.  

 
Results: Subject identification and tracking worked well with 263/270 (97%) of videos 
identifying the person of interest for >90% of the video. Several factors were identified that 
appear to be affecting 2D keypoint detection on prosthetic users including: whether the 
prosthesis was visible or covered by clothing, level of amputation and the type of prosthetic 
socket. The gait analysis system’s ability to detect walking was limited, and walking was not 
detected at all in two individuals. Walking velocity (R2= 0.740, r=0.894) and cadence (R2= 0.694, 
r=0.843) were measured from the video with relative accuracy. The feasibility of detecting 
longitudinal gait changes was also demonstrated.  
 
Discussion/Conclusion: We showed that it is possible to measure quantitative gait data from 
video recorded on a cell phone camera in a clinical setting. Differences in limb and gait 
characteristics between prosthetic users and the individuals that the pre-trained algorithms and 
the gait transformer were trained on appear to be affecting results. Best results were obtained 
for individuals who’s prostheses appear more like those with intact limbs. Additional work is 
needed to improve the system’s ability to work properly on prosthetic users. However, with 
improvements in the ability to locate 2D joints and accurately detect walking, this system shows 
the potential to be used quickly and easily in a clinical setting with minimal equipment or 
training required. Future work will attempt to measure additional spatial-temporal and 
kinematic gait parameters.  



Introduction  

It is estimated that there are currently two million people living with limb loss in the United 
States1. That number continues to increase and it is projected that approximately 185,000 
individuals in the United States undergo an amputation of an extremity each year2. With the 
increase in amputations each year, more individuals are seeking prosthetic care.  

For individuals with a lower limb amputation, various prosthetic components are prescribed 
and the resulting gait pattern is very complex with many factors affecting how an individual 
ambulates using a prosthesis 3,4. It is well known that prosthetic users ambulate differently than 
able bodied individuals 3.  As a result, for many years, researchers have been attempting to 
better understand differences in gait characteristics of prosthetic users with different levels of 
lower-limb amputation 5. As the number of people using prostheses continues to increase and 
prosthetic technology advances, it is important for us to develop methods to study the way that 
prosthetic users are moving and interacting with their environment.  

Many gait analysis systems exist and are used regularly by researchers and clinicians. The 
gold standard is a laboratory with optical motion tracking and force plates 6. While these 
systems produce precise results, they are expensive and time consuming to use, require the 
participant to wear many markers or sensors and necessitate extensive training to be able to 
operate and process the data they produce. Other systems including plantar pressure-based 
measurement techniques or systems that use wearable sensors that are easier to set up but 
typically produce less precise results and often require extensive calibration. Other devices, 
such as the iPecs load cell, have been developed and validated specifically for use in the 
prosthetic population7,8. Most of these devices use some variation of a load cell that is mounted 
distal to the prosthetic socket. While these designs produce useful data, they are expensive and 
require the prosthetist to install the componentry on the individual’s prosthesis. Due to the 
many limitations associated with different gait analysis systems, prosthetists typically rely on 
observational gait analysis in the clinic when performing dynamic alignment adjustments to a 
patient’s prosthesis 4. 

Prosthetic gait has been studied in depth for many years 9–12. Previous studies have used a 
variety of gait analysis systems to compare different prosthetic components, mass distribution, 
alignment of components or the effects of walking surface. Most of these studies have been 
performed in a controlled laboratory setting using the traditional gait analysis systems 
mentioned above. While these studies have assisted in understanding prosthetic gait, they have 
been limited by small sample sizes and the use in a laboratory setting.  

Clinically, performance-based outcome measures are used to track a patient’s progress over 
time 13.  Previous studies have shown performance-based outcomes to be reliable and valid for 
use in individuals with lower limb amputations 14. However, these outcomes are not always 
used routinely in clinical practice as they are often time consuming and challenging to perform. 
They usually require the participant to complete some sort of timed walking test or a variety of 
different balance and mobility activities. Furthermore, performance-based outcome measures 
typically measure constructs such as walking ability, endurance and functional mobility. 
However, they cannot quantitatively measure values to determine how one’s quality of gait is 
improving beyond walking speed. The ability to easily measure gait parameters such as spatio-



temporal measures and joint kinematics would allow quantitative measurement to show how 
one’s quality of gait is changing over time.  

Recent advances in machine learning applied to computer vision have led to significant 
progress in the ability to analyze video and extract human movements, an approach called 
markerless pose estimation 15. These pose estimation algorithms follow a taxonomy of 
approaches ranging from locating joint positions in two-dimensional images to attempting to 
infer the kinematic joint trajectories from videos16. The ability to calculate kinematic data from 
easily obtainable video would greatly facilitate human movement science and rehabilitation. 
More specifically, this process would enable a wider range of objective outcome measures that 
could be used to track performance in the therapy gym, clinic, in the community or at home. 
Recent work has demonstrated these approaches can measure clinically relevant outcomes 
such as walking speed, cadence, and knee angles in individuals with cerebral palsy 17. As well as 
determine clinical rating scales in individuals with Parkinson’s Disease 18. In addition, previous 
work has shown that it is possible to measure joint kinematics when using multiple cameras 
and wearable sensors in a home or clinical setting 19,20.  

Key to the success of these machine learning, sometimes called deep learning, algorithms is 
that they are trained on large amounts of data. While there are many existing approaches and 
datasets to train these algorithms, they all share a common limitation: that they are trained and 
evaluated on datasets of able-bodied individuals. Prosthetic limbs can have a range of 
appearances depending on the individual’s remaining anatomy and specific prosthetic 
componentry used. Typically, prosthetic devices do not appear, nor necessarily move, like an 
intact limb, however sometimes a cosmetic cover will be incorporated to give the prosthesis a 
more anatomical appearance. In addition, clinically it is well known that prosthetic users 
ambulate differently than able-bodied individuals 3. In machine learning, algorithms can fail to 
generalize to data that is different from the training data. As the use of markerless pose 
estimation techniques on prosthetic users has not been widely studied, it is unclear whether 
the differences in limb characteristics between prosthetic users and able-bodied individuals will 
lead to poor generalization with currently established pose estimation algorithms.  

Therefore, the goal of this study was to determine the possibility and identify challenges of 
using currently available markerless pose estimation techniques to perform gait analysis on 
prosthetic users in a clinical setting. Prosthetic users were tracked and recorded during their 
regular prosthetic and/or physical therapy clinical visits to determine the performance of this 
type of gait analysis system in a non-laboratory setting. Some participants were filmed over the 
course of several visits to determine the ability for use as an outcome measure for longitudinal 
assessment. Custom wearable sensors were used to assess the accuracy of the video-based gait 
characterization. Based on the outcomes of this evaluation, the contributions of this study are 
that we identified factors that affect the use of pose estimation techniques on prosthetic users, 
determined the accuracy of measuring walking velocity and cadence from video and 
demonstrated the potential to use this system as an outcome measure to track longitudinal 
changes.  
 
 
 
 



Methods  
Participants  

A convenience sample of twenty-five participants with lower limb amputations were 
recruited. Participants were included if they were between the ages of 18-95, had a unilateral 
or bilateral lower limb amputation, were classified as a K2-K4 functional level of ambulation 
with a prosthesis, were being seen for prosthetic care and/or outpatient physical therapy at 
Shirley Ryan AbilityLab, and were English speaking. Participants were excluded from the study if 
they had a significant new injury that would prevent the use of a prosthesis, cognitive 
impairments sufficient to adversely affect understanding of or compliance with study 
requirements or ability to give informed consent, or any other significant comorbidity that 
would prevent them from using their prostheses or prevent acquisition of useable data by 
researchers. This study was approved by the Northwestern University Institutional Review 
Board (IRB) (STU00215263). All individuals provided written consent prior to participation in the 
study.  
 
Data Collection  

Data was collected while participants completed any mobility activity during their prosthetic 
clinic visits or therapy visits at Shirley Ryan AbilityLab. Prior to any data collection, black tape 
was placed on the floor in the clinical areas at ten-meter distances to allow retrospective 
annotation of ten-meter walk times. The wearable sensors, a custom 9-axis inertial 
measurement unit developed at Shirley Ryan AbilityLab that acquire acceleration, gyroscope, 
and magnetometer data, were calibrated prior to each session as previously described 21. 
Sensors were applied on the participant’s prosthetic side at the beginning of each appointment. 
One sensor was placed on the lateral side of the shank as close to the proximal attachment of 
the prosthetic foot as possible, and one sensor was placed centered on the lateral side of the 
thigh (Image 1). No sensors were placed on the intact limb. Therefore, for unilateral 
participants two sensors were used and for bilateral participants four sensors were used. 
Sensors were applied directly to the prostheses with adhesive Velcro. For transtibial 
participants the thigh sensor was attached with an elastic strap. Once sensors were applied at 
the beginning of the appointment, they remained on until the end of the appointment to 
minimize any interference with routine clinical care.  

Video data was then obtained through a custom app on an Android cell phone camera in 
both planes (sagittal, frontal) if possible as mobility activities occurred naturally throughout the 
clinical visit. The researcher collecting video data would ambulate a few feet behind, in front of 
or next to the participant to collect video data in both planes. A gimbal (DJI Osmo Mobile 3) was 
used to stabilize the cell phone camera (Image 1). Sensor data was acquired by the same app. 
Any prosthetic adjustments made during the prosthetic visits were documented.  

The number of clinical appointments in which data were collected varied between 
participants based on their clinical schedule. Data were collected on participants one to ten 
times. For people that were seen multiple times during physical therapy, the target frequency 
of data collection was one time per week to capture longitudinal changes in gait. Apart from 
placing the sensors, and capturing video and sensor data, all the study procedures represented 
the standard clinical treatment of individuals with a prosthesis.  
 



 
Image 1: Gait analysis system hardware. A: Android cell phone, two wearable sensors and 
gimbal. B: One sensor placed on the shank of a definitive transtibial prosthesis with adhesive 
Velcro. C: Two sensors placed on the shank/thigh of a diagnostic transfemoral prosthesis.  
 
Data Processing  

Post data processing of the videos was performed using a custom gait analysis pipeline that 
has previously been described 22. Figure 10 in the appendix shows an overview of the gait 
analysis pipeline. The pipeline can be broken up into three main steps: subject identification, 2D 
keypoint detection, and gait transformer outputs.  
 

Step 1: Subject Identification: The initial stage of the gait analysis pipeline is for the 
system to identify all individuals in the frame and surround them with a bounding box.  
In most videos an algorithm called DeepSort was used 23. However, in a small subset 
where this method did not track the individuals properly, TraDeS 24 was used instead. 
Next, the research participant was manually identified by the author as the person of 
interest to track for the duration of the video. 

 
Step 2: 2D Keypoint Detection: Once the person of interest was labeled, anatomical 
joints were identified as 2D keypoints in each frame of the videos using a top-down 
method. We used the MMPose library for this 25, which provides many pretrained 
algorithms, and specifically we used an HRNet architecture 26 with a distribution-aware 
coordinate representation 27 trained on the Microsoft Common Objects in Context 
dataset 28.   The software generates a confidence level of the location of each joint on a 
scale of 0-1, with higher values indicating that the algorithm was more confident in 
locating the joint. These values are averaged for the duration of the video when the 
person of interest is identified in the frame. While the software generates a confidence 
level for each joint, Ankle Keypoint Confidence and Knee Keypoint Confidence will be 



discussed in the results of this paper as the individuals included were utilizing lower 
extremity prostheses. The 2D keypoints are then lifted to 3D using GastNET 29.  

 
Step 3: Gait Transformer Outputs: Once the 2D keypoints had been lifted to 3D, the 

videos were processed through a custom gait transformer that has previously been 

trained to analyze the videos frame by frame and measure several different gait 

parameters such as walking velocity, cadence, step length and various joint kinematics.  

The gait transformer can detect when an individual is ambulating (“Detecting Walking”) 

and averages the gait measures over the time that it identifies the individual of interest 

is ambulating. The criteria for walking detection consists of several factors including that 

the bounding box for the individual is not at the edge of the frame, as this can cause 

errors in the tracking. It also assigns a lower probability if the 2D keypoint detection 

reports a lower confidence for either ankle keypoint. As described below, we process 

the gait transformer timing outputs with an Extended Kalman Filter, and the probability 

that walking is detected is reduced when the error between the predicted timing 

outputs and the measured timing outputs are higher. The probability that walking is 

detected also gradually begins to decrease as the cadence drops below 30 steps per 

minute or if there is a wide variability in the cadence. All of these criteria are designed 

to make our detection of walking conservative, and to not report results when the 

tracking, keypoint detection, or gait transformer outputs may be inaccurate. Refining 

these criteria to balance this is an area of future research. The detected walking 

measure is reported as the percent of the video (“Fraction Frames”) that the system 

detected the individual was walking. While the gait transformer can output several 

different gait parameters the following measures will be discussed in the results of this 

paper: Velocity (“Gait Transformer Velocity”), Cadence (“Gait Transformer Cadence”) 

and Kalman Error. Kalman Error is the error calculated once an Extended Kalman Filter 

was applied to the gait transformer output 30. It is an “Ad-hoc” measure used to analyze 

the quality of the gait transformer output on a continuous scale from zero to one. A 

lower Kalman error value indicates a higher quality gait transformer output while a 

higher Kalman error value indicates a lower quality gait transformer output.  

 
Further information about the details of the gait analysis pipeline is beyond the scope of this 
study. For more information on the data processing methodology, please reference 22.  
 
 
 
 
 
 
 
 
 



Video Annotation  
After the videos were run through the initial stages of the gait analysis pipeline and 2D 

keypoints were identified by the algorithms, the videos with 2D keypoints superimposed were 
assessed by the author and the following categories were manually annotated.  
 

Annotation Category  Explanation and options for each category  
Activity  Videos were recorded while participants were completing any mobility 

activity during their clinical appointment. Activities included level walking, 
treadmill walking, stairs, floor recovery and various balance and agility 
activities.  

Assistive Device Use of an assistive device by the participant during mobility activities varied. 
Devices included a walker, cane (single point and quad), axillary crutches, 
forearm crutches and a harness.  

Prosthesis Visible  Whether or not the participant’s prosthesis was visible or covered by clothing 
varied. Yes indicated that the participant’s pant legs were rolled up so that a 
portion of the prosthetic limb was visible. No indicated that the participant’s 
pant legs were down so that no portion of the prosthetic limb was visible in 
the video.  

View  The plane of view the video was captured in varied. View included Frontal, 
Sagittal, or Both. Both indicates that the video was taken from an angle 
between planes or plane of view changed during the video.  

Prosthetic Socket  Type of prosthetic socket utilized by the participant. Diagnostic: clear plastic 
with fiberglass wrap reinforcement. Definitive: laminated material with 
matched skin tone, carbon fiber or other custom appearance.  

Prosthetic Keypoint 
Quality  

To evaluate how well the pre-trained pose estimation algorithms work on 
prosthetic limbs, each video was manually assessed for 2D keypoint detection 
by the author using clinical judgement based on the following scale:  

3: Keypoints correctly locate the joint and track well throughout the 
video   
2: Keypoints correctly locate the joint but tracking is intermittently 
inaccurate throughout the video  
1: Keypoints do not correctly locate the joint and tracking is 
frequently inaccurate throughout the video  

See Image 2 below for example of ratings.  
Annotated Velocity  To evaluate the accuracy of the gait transformers velocity measure, average 

velocity was calculated by manually recording the time it took participants to 
ambulate 10 meters. Two black lines were placed in the clinical areas at 10-
meter distances apart. The author paused the videos and recorded the exact 
time the individual crossed each line to determine average velocity over that 
distance. Note this is a different calculation of velocity than the standard 10-
meter walk test used clinically as an outcome measure.  

 
 



 
Image 2: Example of Prosthetic Keypoint Quality Ratings. A: Prosthetic Keypoint Quality 1 
(Sagittal Plane, Prosthesis Visible). Note that the left ankle keypoint is identified on the right 
ankle and the left knee keypoint is identified mid-thigh. B: Prosthetic Keypoint Quality 2 
(Frontal Plane, Prosthesis Visible). Note that the right ankle and knee keypoints are identified 
too proximal. C: Prosthetic Keypoint Quality 3 (Frontal Plane, Prosthesis Visible). D: Prosthetic 
Keypoint quality 3 (Frontal Plane, Prosthesis Covered).  
 
Sensor Data Processing  

The gyroscope data from the sensor mounted on the ankle was used to detect swing phase 
events and validate the cadence measurements. Specifically, we took a gyro channel 
corresponding to rotation in the sagittal plane (the z-axis with our position) and flipped the sign 
when it was on the right, so a positive rotation corresponded to the shank swinging forward (or 
equivalently rotating with the top of the shank moving backward relative to the ankle). We low 
pass filtered this and then took the detected positive peaks in the waveform that were above 
one-quarter of the 99% percentile of the gyroscope value. Visual inspection confirmed this 
heuristic worked reliably across many participants. Note that while this detects a swing phase 
event, the exact time that swing phase starts and stops is not calibrated to align with the toe off 
and heel contact events. 

Statistical Analysis  
Statistical analysis was performed in Python using the statsmodel package and are 

described below.  
 
 
 
 



Results  

Subject Demographics  
For the results of this study, only videos of participants walking on a level surface were 

analyzed and other activities acquired such as treadmill walking, floor recovery and agility drills 
were not included. Four of the initial twenty-five participants were excluded as data was not 
collected of them walking on a level surface: two participants only had data of other activities 
and two participants were consented, but future clinical visits did not overlap with study timing 
and therefore no ambulation data was collected. Therefore, data from twenty-one participants 
was analyzed and described in this paper. Table 1 shows an overview of the demographic and 
prosthetic information for all the subjects included. Of the twenty-one subjects: sixteen were 
male and five were female, eleven were individuals with a unilateral transtibial amputation 
(TT), two were individuals with bilateral transtibial amputations (B-TT), four were individuals 
with a unilateral transfemoral amputation (TF), two were individuals with a unilateral knee 
disarticulation amputation (KD), one was an individual with bilateral transfemoral amputations 
(B-TF) and one was an individual with a unilateral hip disarticulation amputation (HD). In the 
results below, the individuals with knee disarticulation amputations were included in the 
transfemoral group. Etiology of amputation varied between subjects. Seventeen subjects were 
classified by the referring physician as MFCL K3 level ambulators and three subjects were 
classified as K2 level ambulators. One subject did not have a K-level reported. The average age 
was 55.7 years with a range from 22 – 77 years. The average height was 174.5cm with a range 
from 152 – 190cm.  The average weight was 84.5kg with a range from 55 – 120kg. Prosthetic 
suspension, interface, foot and knee varied between participants. Five subjects utilized a test or 
diagnostic prosthetic socket, twelve subjects utilized a definitive prosthetic socket, and four 
subjects began data collection utilizing a diagnostic socket but were transitioned to a definitive 
socket during the data collection period so data were included for both sockets. 
 



Table 1: Subject Demographics and Prosthetic Information. 
Subject 

ID  Age Gender 
Height 
(cm) 

Weight 
(kgs) Level  Side Etiology  

K-
Level Socket Suspension Interface Knee Foot 

101 50 Male 183 101 TT Left Trauma 3 Test Sleeve  Gel liner xx Ossur Pro-Flex LP  

102 42 Female 167 71 TT Right Infection 3 
Test →  

Definitive  Pin lock Gel liner xx Ossur Pro-Flex XC 

103 38 Male 186 102 TT Left Infection 3 Definitive Active Vacuum Gel liner xx Ossur Pro-Flex XC 

104 60 Male 178 84 TT Left Infection 3 
Test → 

Definitive  Pin lock Gel liner xx College Park Celsus  

105 63 Male 176 120 TF Bilateral Trauma 3 Definitive Passive suction Gel liner 
Ottobock 

C-leg  Ottobock Taleo 

106 53 Female 162 68 TT Right Vascular  x Definitive  Sleeve  Gel liner xx xx 

107 44 Male 180 96 TT Left Trauma 3 Definitive Active Vacuum Gel liner xx 
Rush Rogue 

Evacuate 

108 23 Male 172 70 TF Left Sarcoma 3 Test Passive suction Gel liner 
Ossur 

Rheo XC Ossur Pro-Flex XC 

109 77 Male 188 63 KD Right Vascular 2 Definitive Anatomical  Gel liner 
Ossur 
OH5 Freedom Sierra  

110 77 Female 152 79 TT Left Vascular 3 
Test → 

Definitive  Pin lock Gel liner xx Ottobock Restore  

111 75 Male 184 95 TF Right Sarcoma 3 Definitive Pin lock Gel liner 
Ottobock 
Genium Ottobock Trias  

112 60 Male 173 91 TT Right Sarcoma 3 Definitive Active Vacuum Gel liner xx 
Meridium; College 

park odyssey K3 

114 35 Female 158 74 HD Right Sarcoma 3 Test Anatomical  None 
Ottobock 
3R60-HD Ottobock Terion K2  

115 58 Male 167 79 TF Right Trauma 3 Definitive  Passive suction Gel liner 

Ottobock 
Genium 

X3 xx 

116 63 Male 177 55 TT Left Infection 3 Definitive Pin lock Gel liner xx Ottobock Trias  

117 69 Female 162 85 TT Bilateral Vascular  2 Test  Sleeve  Gel sock  xx Ottobock Restore  

120 22 Male 185 75 KD Left Trauma 3 Definitive Anatomical Gel liner KX06 xx 

121 75 Male 177 95 TF Left Infection 2 Definitive  Passive Suction  Gel liner  
Ottobock 

3R60  xx 

122 52 Male 175 118 TT Right Infection 3 Definitive  Pin lock  Gel liner  xx Rush Rampage LP 

123 64 Male 190 90 TT Bilateral Vascular 3 
Test →  

Definitive  Pin lock  Gel liner  xx Ottobock Senator  

124 69 Male 172 64 TT Right Vascular 3 Test Pin lock  Gel liner  xx Ossur Proflex LP  

Level = Level of amputation. Side = Side of amputation. TT = Transtibial. TF = Transfemoral. KD = Knee Disarticulation. HD: Hip Disarticulation. X = participant’s 
K-level was not reported. Socket = type of prosthetic socket. Knee = prosthetic knee. Foot = prosthetic foot. Test → Definitive = subject started data collection 
in a diagnostic socket and transitioned to a definitive socket during data collection. XX = prosthetic information is not relevant due to level of amputation or 
was not recorded.



Evaluation of Pipeline Step 1: Subject Identification and Tracking  

The initial step of the gait analysis pipeline is to identify the person of interest in the frame 

to track for the duration of the video. If the tracking step is not working properly, the remaining 

steps of the pipeline will fail as well. A total of 270 level walking videos were included in the 

analysis. Of the 270 videos, none were discarded completely due to bounding box failure. 

However, 14 videos had to be processed with a different tracking method in order to correctly 

identify the person of interest throughout the duration of the video. In 263 of the 270 videos, 

the person of interest was identified in the frame for greater than 90 percent of the video.  

Prosthetic Keypoint Quality compared to Keypoint Confidence 

To determine if the computer-generated joint confidence values were accurate as a 
measure of 2D keypoint detection quality, the keypoint confidence values were compared to 
the prosthetic keypoint quality values. Figure 1A shows the relationship between annotated 
prosthetic keypoint quality and ankle keypoint confidence produced by the detection 
algorithm. A total of 186 videos were rated as a prosthetic keypoint quality 1, 144 videos were 
rated as a prosthetic keypoint quality 2, and 69 videos were rated as a prosthetic keypoint 
quality 3. The total number of ratings are greater than the 270 videos included as the bilateral 
subjects’ videos were counted twice in order to include prosthetic keypoint quality values for 
each prosthetic limb. A one-way ANOVA was performed to compare the effect of keypoint 
quality on ankle keypoint confidence, and showed a significant difference between groups (F(2, 
405)=241.65, p=8e-70). A post hoc Tukey test showed that all pairs of groups were significantly 
different (p<0.001).  Figure 1B shows the relationship between prosthetic keypoint quality and 
knee keypoint confidence. The same number of videos were recorded for each prosthetic 
keypoint quality as above.  
 

 
Figure 1: Prosthetic Keypoint Quality Compared to Keypoint Confidence. A: Prosthetic 
Keypoint Quality Compared to Ankle Keypoint Quality. B: Prosthetic Keypoint Quality Compared 
to Knee Keypoint Quality. Boxplot: Box identifies IQR (25-75 percentile), middle line identifies 
median, error bars indicate range, points outside the error bars indicate outliers.  
 

Next, the trends for the ankle keypoint confidence and the knee keypoint confidence were 
compared to identify if one was a better summary statistic to evaluate the 2D joint tracking 



quality in a video.  Average knee keypoint confidence was slightly higher than average ankle 
confidence for all annotated levels of prosthetic keypoint quality values, although this gap was 
most pronounced for prosthetic keypoint quality 1.  Reviewing videos with the 2D keypoints 
superimposed also qualitatively confirmed that the ankle was typically the joint with the 
greatest tracking error. Because of this and that the ankle keypoint confidence shows a tighter 
correspondence to the annotated keypoint qualities (Fig 1A vs 1B), the ankle keypoint 
confidence was used as a summary statistic for tracking quality in following sections. 
 
Evaluation of Pipeline Step 2: Factors that affect 2D keypoint identification  

When manually annotating the videos, it was noted that the 2D keypoint quality appeared 
to be influenced by whether the prosthetic components were visible.  In order to further 
confirm this observation, the ankle confidence values were compared when participants’ 
prosthesis was visible and covered. Figure 2A shows the relationship between average ankle 
keypoint confidence with the prosthesis visible and covered. A total of 235 videos with the 
prosthesis visible and a total of 74 videos with the prosthesis covered were included. The total 
number of videos included in this figure is greater than the 270 total videos included in the 
study as videos of bilateral patients were included twice to account for both prosthetic limbs. 
The average ankle keypoint confidence associated with the prosthesis visible was 0.607, and 
the average ankle keypoint confidence associated with the prosthesis covered was 0.824. A 
two-way ANOVA was performed to analyze the effect of prosthetic visibility and subject ID on 
ankle keypoint confidence and showed a significant main effect of prosthetic visibility (F(1, 
375)=77.6, p=4.9e-17).  Figure 2B shows the ankle keypoint confidence for those participants 
whose data included videos of both conditions: prosthesis visible and covered. Every subject 
showed a higher average ankle keypoint confidence when their prosthesis was covered.  

 
Figure 2: Relationship between Ankle Keypoint Confidence and Prosthesis Visible. A: Ankle 
Keypoint Confidence for both prosthesis visible conditions. Boxplot: Box identifies IQR (25-75 
percentile), middle line identifies median, error bars indicate range, points outside the error 
bars indicate outliers. B: Ankle Keypoint Confidence for participants with data collected in both 
prosthesis visible conditions. Blue = prosthesis visible, Orange = prosthesis covered.  
 

It was also subjectively noted that 2D keypoint tracking appeared to be worse for 
participants with more proximal or bilateral levels of amputation. To confirm this observation, 



the relationship between amputation level and ankle keypoint confidence was analyzed. Figure 
3 shows the relationship between ankle keypoint confidence and level of amputation, further 
stratified for whether the prosthesis was visible. When the prosthesis was visible, average ankle 
keypoint confidence was greater for lower levels of amputation (transtibial > bilateral 
transtibial > transfemoral > bilateral transfemoral > hip disarticulation). A two-way ANOVA was 
performed to analyze the effect of prosthetic visibility and amputation level on ankle keypoint 
confidence which showed a significant interaction for both amputation level (F(4,306)=667.3, 
p=1e-149) and prosthetic visibility (F(1,306)=126.5, p=8.5e-25). A Tukey HSD posthoc test 
showed a significant pairwise difference between all prosthetic levels (p<0.001) other than 
between transfemoral and bilateral transtibial.  When the prosthesis was covered, average 
ankle keypoint confidence was similar for transtibial and transfemoral participants.  No data 
were collected of bilateral transfemoral or hip disarticulation patients with their prosthesis 
covered.  
 

 
Figure 3: Relationship between Ankle Keypoint Confidence and Level of Amputation. Blue = 
prosthesis visible, Orange = prosthesis covered. TT = transtibial, TF = transfemoral, TT BL = 
bilateral transtibial, TF BL = bilateral transfemoral, HD = hip disarticulation. Boxplot: Box 
identifies IQR (25-75 percentile), middle line identifies median, error bars indicate range, points 
outside the error bars indicate outliers. 
 

The type of prosthetic socket (definitive vs diagnostic) is another prosthetic related factor 
that was noted to potentially influence 2D keypoint detection. Therefore, this relationship was 
analyzed further. Figure 4 shows the relationship between ankle keypoint confidence and type 



of prosthetic socket for all individuals who had data recorded of them with both types of 
prosthetic sockets. All videos included in this figure were with pant legs up so that the 
prosthetic socket was visible. Average ankle keypoint confidence was higher for all subjects 
when they were utilizing their definitive prosthetic socket. A two-way ANOVA was performed to 
analyze the effect of subject ID and socket type on ankle keypoint confidence, and revealed a 
statistically significant difference between average ankle keypoint confidence and type of 
prosthetic socket (F(1,79)=44.2, p=3.5e-9), for subject ID (F(3,79)=31.9, p=1.3e-13), and the 
interaction of subject ID and socket type (F(3,79)=3.6, p=1.7e-2).  Subject 110 had the greatest 
difference between the two conditions. This subject had a segment of pipe insulation foam 
covering the prosthetic pylon in their definitive socket condition. No other subjects had 
prosthetic covers. 
 

 
Figure 4: Relationship between Ankle Keypoint Confidence and Type of Prosthetic Socket. 
Blue = participant was utilizing a test/diagnostic prosthetic socket. Orange = participant was 
utilizing a definitive prosthetic socket. All videos were with the prosthesis visible. Boxplot: Box 
identifies IQR (25-75 percentile), middle line identifies median, error bars indicate range, points 
outside the error bars indicate outliers. 
 

Videos were obtained in a variety of views from subjects including pure frontal plane, pure 
sagittal plane, and a mixture of both planes. The view was partially constrained by the room in 
the therapy areas and other patients or therapists present. In order to determine if the plane of 
view influenced 2D keypoint detection, the relationship between ankle keypoint confidence 



and plane of view was analyzed. Figure 5 shows the relationship between ankle keypoint 
confidence and plane of view the video was recorded in separated by whether the prosthesis 
was visible. When the prosthesis was visible, the average ankle keypoint confidence was slightly 
higher for frontal plane > sagittal plane > both planes. When the prosthesis was covered, the 
average ankle keypoint confidence between each group was very similar.   
 

 
Figure 5: Relationship between Ankle Keypoint Confidence and Plane of View. Blue = frontal 
plane, Orange = sagittal plane, Green = both planes. Both indicates that the plane of view 
changed during the video or video was taken on an angle between both planes. Boxplot: Box 
identifies IQR (25-75 percentile), middle line identifies median, error bars indicate range, points 
outside the error bars indicate outliers. 
 
Evaluation of Pipeline Step 3: Factors that affect gait transformer outputs  

In order to accurately measure gait parameters over the duration of a video, the gait 
transformer must first accurately detect when the person of interest is ambulating. As the data 
included in the results of this study were limited to level walking activities, the participants 
were ambulating for most of the video. However, the length of each video and therefore 
duration of ambulation varied between participants and videos. In addition, the total number of 
videos for each subject varied due to their clinical schedule and activities they were working on 
during clinical visits. Table 2 shows the amount of walking detected for each participant. There 
were several individuals (103, 105, 114, 117, 121 and 123) in which walking was detected less 
than 10% of the time. Walking was complete not detected in two individuals (109 and 124). Of 



those eight individuals: one had bilateral transfemoral amputations, two had bilateral 
transtibial amputations, one had a hip disarticulation amputation, two had a transfemoral or 
knee disarticulation amputation and two had a transtibial amputation.  
 
Table 2: Detecting Walking by Participant.  

Subject 
ID Level 

Total 
Videos 

Walking 
Segments 

Walking 
Frames 

Total 
Frames 

Fraction 
Frames 

107 TT 5 11 3839 4517 84.99 

115 TF 10 31 9033 12858 70.25 

122 TT 5 21 6827 9857 69.26 

112 TT 5 16 6315 9615 65.68 

104 TT 16 64 27533 42410 64.92 

108 TF 13 132 26874 55456 48.46 

116 TT 21 181 50897 106803 47.66 

101 TT 8 13 3679 7823 47.03 

106 TT 15 59 15642 53203 29.40 

120 KD 5 11 2503 9329 26.83 

102 TT 20 83 21999 85167 25.83 

110 TT 43 94 26217 127886 20.50 

111 TF 28 64 12011 60568 19.83 

103 TT 2 1 188 2097 8.97 

117 B TT 10 9 1719 21697 7.92 

123 B TT 19 20 3722 90734 4.10 

121 TF 17 13 1796 72380 2.48 

114 HD 6 4 583 34840 1.67 

105 B TF 23 8 990 63321 1.56 
Level = level of amputation. Total videos = total number of level walking videos. Walking segments = number of 
times the system detecting walking. Walking frames = number of frames the system detecting walking. Total 
Frames = total frames collected on participant. Fraction Frames = % of frames that walking was detected. 

 
To determine if 2D keypoint detection was affecting the outputs of the gait transformer, the 

relationship between ankle keypoint confidence and walking detection was analyzed. Figure 6A 
shows the relationship between ankle keypoint confidence and fraction of frames that walking 
was detected. While there is no direct linear relationship between ankle keypoint confidence 
and fraction of frames, it does appear that when ankle keypoint confidence is high, the fraction 
of frames walking is detecting tends to be higher. And when the ankle keypoint confidence is 
low, fraction of frames that walking is detected is also low.  

 
Kalman Error is another measure used to determine the quality of the gait transformer 

outputs. Therefore, the relationship between ankle keypoint confidence and Kalman error was 
further explored to determine if 2D keypoint detection was affecting the quality of the gait 
transformer outputs. Figure 6B shows the relationship between ankle keypoint confidence and 
Kalman error. Again, there is no direct linear relationship between ankle keypoint confidence 
and Kalman error. However, it appears that once the ankle tracking quality drops below a 



certain level the Kalman error increases and consequently the fraction of frames in which 
walking is detected tends to decrease. Thus, 2D keypoint tracking appears to have an impact on 
the quality of the gait transformer outputs.  
 

 
Figure 6: Relationship between Ankle Keypoint Confidence and Gait Transformer Outputs. A: 
Ankle Keypoint Confidence and Fraction of Frames. B: Ankle Keypoint Confidence and Kalman 
Error.  
 

As it was previously determined that ankle keypoint confidence and walking detection 
appear to be affected by amputation level, it was thought that the Kalman error might also be 
affected by level of amputation. If so, it could indicate that the accuracy of the gait parameter 
values output by the gait transformer may be affected by amputation level. Therefore, this 
relationship was further investigated. Figure 7 shows the relationship between Kalman Error 
and Level of Amputation separated by whether the prosthesis was visible. Average Kalman 
error was different between levels of amputation. With higher levels of amputation having 
greater Kalman error (Bilateral TT > Bilateral TF > TF > TT). In addition, for the transtibial and 
transfemoral groups, the Kalman error was higher when the prosthesis was visible.  
 



 
Figure 7: Relationship between Kalman Error and Level of Amputation. Blue = prosthesis 
visible, Orange = prosthesis covered, TT = transtibial, TF = transfemoral, TT_BL = bilateral 
transtibial, TF_BL = bilateral transfemoral. Boxplot: Box identifies IQR (25-75 percentile), middle 
line identifies median, error bars indicate range, points outside the error bars indicate outliers.  
 
Evaluation of Pipeline Step 3: Accuracy of Gait Transformer Measures  

The gait transformer has been trained to output several gait parameters and averages these 
parameters over the time it detects the individual walking. Once the gait transformer is 
accurately detecting walking, the next step is to access the accuracy of the gait parameters that 
it measures. While the gait transformer outputs several parameters, in this study, the accuracy 
of the gait transformer velocity and cadence were analyzed.  
 

Figure 8A shows the relationship between the gait transformer velocity and the annotated 
velocity. Gait transformer velocity was calculated as the average velocity when the system was 
detecting walking and the individual was ambulating between the two black lines. Annotated 
velocity was calculated by manually timing 10-meter walk with black tape marks on the ground 
in the clinical area. A total of 86 videos were included in this figure, with 186 walking segments 
from 15 different subjects. Only videos where the individual was ambulating without stopping 
for a break between the two black lines, and the system was detecting walking at some point 



during that time were included in this figure. The gait transformer velocity measure was 
relatively accurate compared to the annotated velocity (R2 = 0.740, r = 0.894). In general, when 
individuals were ambulating at slower speeds (<1.0 m/s), the gait transformer tended to 
overestimate their velocity and when individuals were ambulating at faster speeds (>1.0 m/s), 
the gait transformer tended to underestimate their velocity.  
 

Figure 8B shows the relationship between the gait transformer cadence and the cadence 
measured by the wearable sensors. The gait transformer cadence was calculated as the average 
cadence when the system was detecting walking in steps/minute. The sensor cadence was 
measured as steps/minute calculated from the wearable sensor attached to the prosthesis 
when the gait transformer was detecting walking. Only walking segments that were at least 300 
frames long were included. A total of 61 videos were included in this figure, with 135 walking 
segments from 15 different subjects. The gait transformer cadence was relatively accurate 
compared to the sensor cadence (R2 = 0.694, r = 0.843). The correlation was very tight other 
than a single outlier where the gait transformer estimated the cadence as zero that may be 
negatively affecting our results.  
 
 

 
Figure 8: Accuracy of Gait Transformer Measures.  A: Gait Transformer Velocity compared to 
Annotated Velocity. B: Gait Transformer Cadence compared to Sensor Cadence.  
 
Longitudinal assessment in physical therapy: demonstrate potential use as outcome measure 

One of the main goals for the application of this technology is to produce a system to 
improve quantitative, longitudinal characterization of gait in a clinical setting. Figure 9 
demonstrates the potential to use the gait analysis system as an outcome measure to detect 
longitudinal change in prosthetic users over the course of several physical therapy sessions. 
Four participants who had data collected at a minimum of three physical therapy sessions over 
the course of at least five weeks were selected to assess for change. Sensor cadence was 



averaged for the entire duration of level walking videos recorded that day. Gait transformer 
cadence was averaged over the times the system was detecting walking. Annotated velocity 
was calculated using the times the individual crossed the black lines on the ground in the 
clinical area. Gait transformer velocity was averaged over the times the system was detecting 
walking.  
 

In general, there was a good correspondence between the gait transformer measures and 
the values measured from the wearable sensors and annotation of walking speed. The gait 
transformer cadence values were well correlated with the sensor cadence values for each 
participant and the gait transformer cadence was sensitive to change that the sensor cadence 
measured between days. However, there were several notable exceptions when the gait 
transformer outputs were inaccurate. For subject 102 (Figure 10A), no gait transformer outputs 
were measured the first week, indicating that the system did not detect walking at all during 
those videos. In addition, several subjects saw a difference between the gait transformer 
velocity and the annotated velocity. For subjects 102, 104 and 116 the gait transformer tended 
to overestimate the velocity compared to the annotated velocity. While for subject 108, the 
gait transformer tended to underestimate the velocity. For subjects 104 and 108, while the gait 
transformer velocity values were slightly different from the annotated values, both values 
appeared to still show the same general trend in change in velocity. However, for subjects 102 
and 116, the gait transformer reported changes in velocity while the annotated velocity 
remained more stable.  
 
 
 
 
 



 
Figure 9: Longitudinal Assessment in Physical Therapy: Demonstration of potential use as an outcome measure. Each figure shows 
the comparison between cadence and velocity over the course of several therapy sessions with date on the x-axis and 
cadence/velocity on the y-axis. Date ranges on the x-axis indicated the week of physical therapy treatment the data was collected. 
Left: sensor cadence compared to gait transformer cadence. Right: annotated velocity compared to gait transformer velocity. A: 
Subject 102. B: Subject 104. C: Subject 108. D: Subject 116. Dots represent measurements recorded from that date, line is the 
average, shaded lines represent the error.



Discussion  

In order to evaluate using video-based gait analysis with our custom gait analysis pipeline to 
track longitudinal outcomes for prosthetic users, we performed an in-depth analysis of the 
performance of several components including Subject Identification and Tracking, 2D Keypoint 
Identification, and Gait Transformer Outputs. This revealed numerous reasons for optimism but 
also highlighted several limitations.  
 
Evaluation of Pipeline Step 1: Subject Identification and Tracking  

Identifying the person of interest and tracking them throughout the duration of the video is 
a step in the pipeline that worked well and does not appear to be a limiting factor. However, it 
is still not perfect and 4% of videos did require processing with an alternative algorithm with 
different idiosyncrasies. Problems that necessitated this were most commonly identity switches 
between the prosthetic user and therapist, likely exacerbated by the need for them to remain 
in close proximity for safety reasons. This also sometimes occurred when both the prosthetic 
user and therapist left the frame, which is sometimes inevitable when acquiring video in a 
therapy gym. All videos were able to be processed and identify the person of interest. In nearly 
all the videos, the person of interest was identified in the frame for greater than 90 percent of 
the time. However, 100 percent identification may not be possible in all videos as there were 
times in some of the videos when the subject left the frame completely as mentioned above.  
 
Evaluation of Pipeline Step 2: Factors that affect 2D keypoint identification  

The algorithms’ ability to correctly identify the 2D joint location is fundamental to creating 
an accurate 3D model of the individual ambulating. Since the pre-trained algorithms had only 
been trained on able-bodied individuals, one would expect that visual limb differences between 
prosthetic users and able-bodied individuals might result in poor 2D keypoint generalization. 
When the prosthesis was showing, average ankle keypoint confidence was lower (Figure 2). In 
addition, for all participants who had data collected in both prosthesis visible conditions, ankle 
keypoint confidence was lower for all individuals when their prosthesis was visible indicating 
that the pre-trained algorithms are struggling to identify the 2D keypoints when the prosthetic 
limb is showing.  
 

As the level of amputation becomes more proximal, the limb differences between the 
prosthetic device and an able-bodied limb increase. Therefore, one would assume that the 
higher the level of amputation the worse the 2D keypoint tracking would be. Results confirmed 
that when the prosthesis was visible, the higher the level of amputation, the lower the ankle 
keypoint confidence (Figure 3).  Furthermore, when the entire prosthesis was covered there 
was no difference in ankle keypoint confidence between transtibial and transfemoral users. 
Therefore, it is assumed that as the level of amputation increases, the more distal ankle joint is 
harder for the computer to estimate, as there is more prosthetic componentry showing that is 
visually different in shape from typical able-bodied limbs, and therefore it is less confident in 
the location of the ankle joint. 
 



The type of prosthetic socket (definitive vs diagnostic) is a prosthetic related factor that 
could affect 2D keypoint detection when the prosthesis is visible as the materials used in the 
two types of sockets may be identified differently by the algorithms. Though not the case with 
the study population, individuals with definitive sockets sometimes have prosthetic covers that 
cover the pylon and make the prosthesis appear more like an anatomical leg, which would likely 
improve 2D keypoint detection. Of the four subjects with data in both socket conditions, only 
one had some sort of cover. This subject had a piece of pipe foam covering the prosthetic pylon 
that increased the size of the shank without providing the shape of an anatomic calf. When 
analyzing the ankle keypoint confidence of these individuals with their prosthesis visible, there 
was a difference in ankle keypoint confidence between having a definitive or diagnostic socket. 
The subject with the foam cover had the greatest difference in average ankle keypoint 
confidence between the diagnostic and definitive condition. This indicates that the 2D keypoint 
detection does appear to be affected by the type of prosthetic socket and presence of a foam 
cover. However, our sample size for this analysis was limited to four subjects and therefore may 
not be large enough to make assumptions to a larger number of individuals. Typically, 
diagnostic sockets are made of clear plastic and may have various different shapes near the 
distal end of the socket as the connection between the prosthetic socket and distal prosthetic 
componentry varies between individual based on the shape of their residual limb, their 
prosthetic alignment and the suspension mechanism that is built into the socket. In addition, 
diagnostic sockets are typically reinforced with fiberglass at the distal end, creating a color 
transition in the socket. While definitive sockets are typically a solid color and have a more 
streamlined shape at the distal end. These different shape outlines and color variations may 
have an effect on the algorithms ability to detect 2D keypoints. Furthermore, it appears that 
any factor that makes the limb appear more like an anatomical limb (lower levels of 
amputation, prosthesis covered, and definitive prosthetic socket) increases the quality of 2D 
keypoint detection.  
 

For the algorithms to be able to correctly identify the joint locations, one would assume 
that the joints would likely have to be visible in the frame. Therefore, it was thought that the 
plane of view the video was taken in might affect 2D keypoint detection. However, our results 
showed that there was no difference in 2D keypoint detection between the planes of view 
(Figure 5). This is an important finding, as the goal is to use the gait analysis system in a clinical 
setting. Often space is limited in clinical settings and therefore the plane of view that the video 
may be recorded in could be constrained by the space available. In these situations, it is likely 
more important for the person recording the video to position themselves in a location where 
they can keep the person of interest in the frame the entire time rather than worrying about 
what plane the video is being recorded in. 
 

Other factors that were analyzed and did not appear to have an effect on 2D keypoint 
detection include presence of an assistive device and walking velocity. Presence of an assistive 
device is a factor that could potentially influence 2D keypoint detection, as there is more in the 
image for the algorithm to detect and determine the location of the joints. In addition, often 
the assistive device may be obstructing the view of the joints and therefore affecting 2D 
keypoint detection. Clinically, individuals who ambulate with an assistive device tend to do so 



because they have a lower level of mobility or need the device for balance security. Therefore, 
they likely ambulate differently than most able-bodied individuals. As the sample included in 
this study was a convenience sample and data were collected during normal clinical visits with 
the intention of not interfering with clinical practice, presence of an assistive device was not 
controlled for. Therefore, we did not have enough data of individual subjects ambulating with 
and without an assistive device to determine if the assistive device was affecting 2D keypoint 
detection or if other factors related to the individual were affecting 2D keypoint detection. 
Walking velocity did not appear to have a direct influence on 2D keypoint detection. This is 
likely because the 2D keypoints are detected in each frame of the video and regardless of how 
fast the individual is ambulating, the algorithms should be able to detect the joints in each 
frame if the images are clear. However, walking velocity may have an effect on the ability of the 
gait transformer to detect walking.  
 
Evaluation of Pipeline Step 3: Factors that affect gait transformer outputs  

There are two variables that can be used to evaluate the gait transformer outputs in order 
to determine if is functioning properly for prosthetic users. The first is that the system is 
detecting walking (Fraction Frames). The second is Kalman Error, an ad hoc measure to 
determine the error associated with the gait transformer output. The system’s ability to detect 
walking is fundamental for accurate measurements because the values of interest are 
subsequently averaged over the time the system detects walking. Therefore, if it is not 
detecting walking accurately, relevant data will not be included in the final measurements. As 
the videos were typically only recorded when the participants were ambulating, we can assume 
that the participant was ambulating the entire duration of the video. Walking was detected 
more than 50% of the time for just five of the twenty-one participants. The system was limited 
in detecting walking for several individuals and two participants were not detected walking at 
all. This may indicate that the walking detection criteria used was too conservative, or that 
there are other prosthetic related factors affecting the systems’ ability to detect walking such 
as 2D keypoint detection. The individuals with higher levels of amputation and the bilateral 
participants tended to be the ones that the system did not detect walking well.  
 

As these individuals also tended to have lower ankle keypoint confidence, the relationship 
between ankle keypoint confidence and the gait transformer outputs was analyzed (Figure 6).  
While there is not a direct relationship between ankle keypoint confidence and Fraction of 
Frames or Kalman Error, 2D keypoint quality seems to be related to the quality of the gait 
transformer outputs. It appears that once the ankle tracking quality drops below a certain level 
the Kalman error increases and consequently the fraction of frames walking is detected tends 
to decrease. This indicates that 2D keypoint tracking likely has an impact on the quality of the 
gait transformer outputs. Furthermore, individuals with higher levels of amputation, tended to 
have high Kalman error (Figure 7). Indicating that the gait transformer is not performing as well 
for individuals with higher levels of amputation.  
 

Our results have shown that for individuals with higher levels of amputation, 2D keypoint 
quality was significantly lower than lower levels of amputation, which may have affected the 
system’s ability to detect walking in these individuals. Clinically, bilateral prosthetic users and 



those with higher levels of amputation tend to ambulate with more asymmetries and gait 
deviations compared to able bodied individuals 3. In addition to the prosthetic factors explored, 
this may have affected the gait transformer’s ability to understand how they are ambulating as 
it has been trained on individuals with intact limbs. If the initial step of 2D keypoint detection is 
inaccurate, the gait transformer outputs will likely be inaccurate as well. However, as the gait 
transformer was trained on non-amputees, the asymmetries present in prosthetic gait, 
specifically among those with higher levels of amputation or bilateral amputations, may have 
affected the gait transformers outputs.  More work is needed to improve 2D keypoint detection 
and walking detection in prosthetic users. Once these steps are improved, additional analysis 
and work may be needed to improve the gait transformer’s ability to understand some of the 
asymmetries present in prosthetic gait. We have identified a potential solution to improve 2D 
keypoint detection. While the process is quite time-consuming, initial results show some 
promising improvement in 2D keypoint detection of the prosthetic limb. For more details 
please see Image 3 in the Appendix.  
 
Evaluation of Pipeline Step 3: Accuracy of Gait Transformer Measures and Demonstration of 
Potential Use as an Outcome Measure 

When the system is detecting walking accurately, the accuracy of the various output 
parameters also needs to be evaluated. Our results show that when the system is detecting 
walking properly, it is fairly accurate at measuring velocity and cadence in prosthetic users 
(Figure 8). However, the system tended to overestimate velocity for individuals who were 
ambulating slowly, and underestimate velocity for individuals who were ambulating quickly. 
This inaccurate measure of velocity may affect the ability to use the system as an outcome 
measure to detect changes in velocity over time as seen in Figure 9. When using the gait 
analysis system to detect change in prosthetic users over the course of several physical therapy 
sessions, a difference was seen between the annotated velocity and gait transformer velocity 
for a few individuals. It is possible that the system failed to detect walking accurately and the 
gait transformer velocity used for longitudinal assessment was only a small portion of the time 
the individual was ambulating. However, it is also possible that the amount of change in the 
individual’s velocity was small enough that it is within the gait transformer’s velocity error 
range and therefore the gait transformer does not accurately detect this change in velocity.  
 

The system’s ability to measure cadence accurately did not appear to be affected by the 
speed the individual was ambulating at, as seen in figure 8B. In addition, when using the system 
to detect changes in cadence over the course of several physical therapy sessions, there was no 
difference between the gait transformer cadence and the sensor cadence as seen in Figure 9. 
Therefore, in its current state, the gait transformer appears to be able to measure changes in 
cadence accurately. However, additional work is needed to improve the gait transformers 
velocity measurement. As velocity is a measure that is easily measured with current outcome 
measures, next steps will look more into other quantitative gait data to measure such as step 
length, step width, kinematics and kinetics.  
 
 
 



Clinical Implications of Results of this study  
The goal of this study was to determine the possibility and identify challenges of using 

currently available markerless pose estimation techniques in conjunction with a custom gait 
transformer to perform gait analysis in prosthetic users in a clinical setting. The results 
demonstrate that when using pre-trained pose estimation algorithms for gait analysis on 
prosthetic users, the best results will likely be accomplished on individuals who appear more 
like those with intact limbs. Therefore, best results will be accomplished on individuals with 
lower levels of amputation and when the prosthesis is covered by clothing, as 2D keypoint 
detection is better for those individuals. If the prosthesis is visible, better results will be 
achieved with individuals utilizing a definitive socket. However, clinically the standard of 
practice is to observe a prosthetic user ambulating with their prosthesis showing so the 
prosthetist can assess what is occurring at the prosthesis and make any necessary adjustments. 
Therefore, in order to make this technology more applicable for prosthetists in a clinical setting, 
additional work is needed to improve 2D keypoint detection when the prosthetic limb is visible. 
Furthermore, additional work is needed to determine if specific socket colors, materials or 
cosmetic covers affect results as well. 
 

In its current state, the custom gait analysis pipeline used in this study appears to be fairly 
accurate for measuring walking velocity and cadence. Furthermore, the gait transformer 
appears to work better on individuals with lower levels of amputation. A possible reason for 
this is that individuals with higher levels of amputation tend to ambulate with more 
asymmetries and gait deviations compared individuals with intact limbs. Therefore, in order to 
use the gait transformer on individuals with higher levels of amputation, the transformer may 
need to be trained to better understand prosthetic gait and different prosthetic componentry. 
Future work will also look to measure additional gait parameters. 
 

In addition, as these algorithmic based deep learning techniques have not been widely used 
in rehabilitation, it will be important for future work to carefully annotate and evaluate outputs 
and results to ensure accuracy at each stage of data processing.  
 
Limitations  

The main limitation to this study was the small sample size. Convenience sampling was used 
to enroll subjects and the number of individuals in each group may not be equal. Therefore, it is 
difficult to generalize the results to larger populations. In addition, several factors analyzed 
were not necessarily controlled for as this study was conducted in a clinical setting with the 
goal being to collect data without interfering with routine clinical practice. These factors include 
whether the prosthesis was visible, presence of an assistive device, plane of view, and type of 
prosthetic socket. When possible, results were analyzed for individuals who had data collected 
with both conditions for each of these factors. However, there may be other factors that were 
not controlled for when analyzing certain relationships that could affect the results.   
 
Implications of the use of a gait analysis system in a clinical setting  

While there is still work needed to improve the gait analysis pipeline to increase the 
accuracy of its outputs, the results of this study demonstrate that it is possible to measure 



quantitative gait data from a cell phone video in a clinical setting. The ability to measure 
quantitative gait data from easily obtainable video could have many potential uses in 
rehabilitation and research. These uses may include more detailed outcome measurement, 
mobile gait analysis for use in research studies to assess community ambulation, dynamic 
alignment tool for prosthetists to assist with observational gait analysis and alignment, as well 
as for ankle foot orthosis tuning. While the results from video-based gait characterization may 
not be as accurate as traditional gold standard measures, if they allow for measurement in a 
clinical or community setting where useable gait data was not previously easy to obtain, results 
may be very useful despite these inaccuracies. As future work continues to improve the results 
of these techniques, the question of how accurate is sufficient for use in a clinical/community 
setting will need to be addressed.  
 
Future directions  

There are many potential applications and future directions in this area of research. Next 
steps specific to use in prosthetic users will first be to improve 2D keypoint detection and 
walking detection for higher levels of amputation. Once those steps are improved, additional 
training to improve the gait transformer’s ability to understand some of the gait asymmetries 
apparent in prosthetic gait may be warranted. Additional parameters to be measured from 
video analysis include additional spatial-temporal, kinematic and kinetic parameters. 
Furthermore, the outputs of the gait transformer will likely need to be validated against current 
gold standard measurement techniques to determine the accuracy of its outputs. Future work 
will likely include testing and training of the algorithms on additional patient populations for 
use in a clinical setting in order to increase the amount of people the gait analysis system can 
be used with. Once the system is properly trained, and outputting valid and accurate gait data, 
work will need to be done to determine how this system can be used specifically to aide in 
clinical decision-making.  
 
Conclusions 

The results of this study demonstrated that it is possible to measure quantitative gait data 
from video obtained with a cell phone camera in a clinical setting. However, there are many 
factors that affect the ability to use pre-trained pose estimation algorithms on prosthetic users. 
Best results were obtained for individuals who appear more like those with intact limbs (i.e. 
lower levels of amputation and when the prosthesis was covered by clothing).  Differences in 
limb and gait characteristics between prosthetic users and the individuals that the pre-trained 
algorithms and the gait transformer were trained on appear to be affecting results. Additional 
work is needed to improve the system’s ability to work properly with prosthetic users. 
However, with improvements in the ability to locate 2D joints and accurately detect walking, 
this system shows the potential to be used quickly and easily in a clinical setting with minimal 
equipment or training required.  
  



Appendix 
 

 
Figure 10: Overview of the custom gait analysis pipeline.  
 
Potential Solution to Improve 2D Keypoint Detection 

We have identified a potential solution to improve 2D keypoint detection for the prosthetic 

limb. The process involves manual annotation of each video with a software called Deep Lab 

Cut. To annotate a video, 20 frames are chosen and the prosthetic joints are manually 

annotated in each frame. The software then takes those manually annotated frames and 

applies the joint locations to the entire video. While the process is quite time-consuming, initial 

results show promising improvement in 2D keypoint detection as seen in Image 3.  

 

 

 

 

 

 

 

 

 

 

 

 



 

Image 3: Example of improvement in 2D Keypoint Detection with Deep Lab Cut Annotation. 
A: 2D Keypoint Detection with Pre-Trained Algorithm. B: 2D Keypoint Detection with Deep Lab 
Cut Annotation. C: 2D Keypoint Detection with Pre-Trained Algorithm. D: 2D Keypoint Detection 
with Deep Lab Cut Annotation. E: 2D Keypoint Detection with Pre-Trained Algorithm. F: 2D 
Keypoint Detection with Deep Lab Cut Annotation. 
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