Post-Amputation Pain Presentations: Considering Biological Sex

Samantha J. Stauffer, CPO, MSOP; Independence Prosthetics-Orthotics; <u>sstauffer@independencepo.com</u> J. Megan Sions, PT, DPT, PhD; University of Delaware; <u>megsions@udel.edu</u> **Creation Date: April 2024; Date for Reassessment: April 2029**

Clinical Question: Do pain presentations differ between male and female adults with lower-limb loss?

Background: Following lower-limb loss (LLL), up to 95% of adults experience persistent, bothersome pain that impacts mobility and quality-of-life.¹ In comparison, only about 20% of the general population experiences chronic pain.² Prior research in the general population has identified sex-specific differences in pain sensitivity and pain processing, which predispose female adults to chronic pain.³ The purpose of this CAT is to evaluate the current literature identifying sex-specific differences in post-amputation pain presentations, including amputation-site pain (i.e., phantom limb, residual limb) and remote-site pain (e.g., low back, contralateral limb).

Search Strategy:

Databases Searched: CINAHL, PubMed

Search Terms: "pain" AND ("amputation" OR "limb loss" OR "amputee*") AND ("sex" OR "female") NOT ("gender")

Inclusion/Exclusion Criteria: *Studies Included:* English, 2010-present, original research, peer-reviewed, participants aged \geq 18 years-old with LLL. *Studies Excluded:* Case studies; systematic reviews and meta-analyses; studies not reporting sex-related differences or evaluating treatment efficacy or only upper-limb loss.

Synthesis of Results: Six articles were identified and reviewed that evaluated sex-specific differences in postamputation pain prevalence.⁴⁻⁹ Samples were approximately 30-40% female, which is consistent with prior findings that males are at higher risk of LLL. Beisheim et al.⁶ conducted a cross-sectional study of postamputation pain distribution, finding female individuals were more likely to report pain in the residual limb, low back, and contralateral hip and knee; female sex was also associated with 2.4x increased odds of multi-site pain. Mioton et al.⁷ also conducted a survey study, reporting female sex elevated risk of residual limb pain. Some observational cross-sectional⁷ and longitudinal⁵ studies have found greater prevalence of phantom-limb pain among female participants,^{5,7} but this was not ubiquitous as Beisheim et al.⁶ reported no between-sex differences in phantom-limb pain prevalence, and Hirsch et al.⁴ reported no significant between-sex differences in phantom or residual-limb pain presence or severity after controlling for cause of amputation. However, Hirsch et al.⁴ found females reported significantly greater overall pain intensity. Beisheim-Ryan et al.⁸ crosssectionally evaluated pain-pressure sensitivity and found female participants had greater sensitivity in the amputated region and at remote sites, which may help to explain elevated reporting of post-amputation pain among females. Liston et al.⁹ reported inconsistent findings, stating male individuals were at higher risk of developing neuropathic pain (i.e., phantom-limb pain, neuroma, neuralgia) post-LLL, despite the adjusted odds ratio indicating a 14% reduction in risk (see Evidence Table). While all studies evaluated post-amputation pain presentations, none reported on participant medication use, which may have affected pain reporting.

Clinical Message: Current literature largely suggests that females are at greater risk of developing postamputation pain, including residual-limb pain and remote-site pain. There are conflicting reports related to the risk of phantom-limb pain based on sex. Existing post-amputation evidence suggests that pain processing may differ between sexes, as evidenced by lower pain-pressure thresholds and greater overall pain intensity among female adults. Additional research is necessary to determine the underlying pathophysiologic mechanisms that elevate risk in females, so that targeted post-amputation pain interventions may be implemented. Based on current evidence, clinicians should consider early evaluation and referral to manage post-amputation pain among female clients undergoing LLL.

References:

- 1. Ephraim PL, Wegener ST, MacKenzie EJ, Dillingham TR, Pezzin LE. Phantom pain, residual limb pain, and back pain in amputees: results of a national survey. *Arch Phys Med Rehabil*. 2005;86(10):1910-1919.
- 2. Goldberg DS, McGee SJ. Pain as a global public health priority. *BMC Public Health*. 2011;11:770. Published 2011 Oct 6.
- 3. Bartley EJ, Fillingim RB. Sex differences in pain: a brief review of clinical and experimental findings. *Br J Anaesth.* 2013;111(1):52-58.
- 4. Hirsh AT, Dillworth TM, Ehde DM, Jensen MP. Sex differences in pain and psychological functioning in persons with limb loss. *J Pain*. 2010;11(1):79-86.
- 5. Bosmans JC, Geertzen JH, Post WJ, van der Schans CP, Dijkstra PU. Factors associated with phantom limb pain: a 31/2-year prospective study. *Clin Rehabil.* 2010;24(5):444-453.
- 6. Beisheim EH, Seth M, Horne JR, Hicks GE, Pohlig RT, Sions JM. Sex-specific differences in multisite pain presentation among adults with lower-limb loss. *Pain Pract*. 2021;21(4):419-427.
- 7. Mioton LM, Dumanian GA, Fracol ME, et al. Benchmarking residual limb pain and phantom limb pain in amputees through a patient-reported outcomes survey. *Plast Reconstr Surg Glob Open*. 2020;8(7):e2977.
- 8. Beisheim-Ryan EH, Pohlig RT, Hicks GE, Horne JR, Medina J, Sions JM. Mechanical pain sensitivity in postamputation pain. *Clin J Pain*. 2021;38(1):23-31.
- 9. Liston JM, Forster GL, Samuel A, Werner BC, Stranix JT, DeGeorge BR, Jr. Estimating the impact of postamputation pain. *Ann Plast Surg.* 2022;88(5):533-537.

Evidence Table

	Hirsh, 2010 ⁴	Bosmans, 2014 ⁵	Beisheim, 2020 ⁶	<i>Mioton</i> , 2020 ⁷	Beisheim-Ryan, 2021 ⁸	Liston, 2022 ⁹
Population	N=335 adults with LL (72% male; 92% Caucasian; 58.9±14.1 years; 77.9% traumatic cause; 99% lower-limb)	N=85 adults with LL (61.2% male; 58.2±17.4 years; 59% dysvascular cause, 86% lower-limb)	N=303 adults ≥ 1 year post unilateral lower LL (67% male; median age 56 [46, 56]* years; 73.3% transtibial; 36.3% traumatic cause)	N=727 individuals with lower- and upper- LL (66.4% male; 85% Caucasian; 92.4% lower- limb; 42% traumatic cause)	N=94 adults with unilateral transtibial LL (62.4% male; median age 49 [38, 57]* years; 42.6% traumatic cause)	N=29,507 adults who underwent lower LL from 2007-2017 (65.7% male; 84.3% aged ≥50 years)
Study Design	Cross-sectional survey study	Observational, longitudinal survey study	Cross-sectional survey study	Cross-sectional survey study	Cross-sectional study	Retrospective study
Methodology	Participants were recruited through a database of people who had consented to be recontacted for research, an amputation list serve, and the community.	Individuals completed the questionnaires at amputation, then 4 subsequent times between initial amputation & 3.5 years after amputation.	Participants completed a standardized interview about presence of amputation- region (e.g., PLP, RLP) and remote-site pain.	Participants were recruited from conferences, prosthetic clinics, amputee support groups, and via brochures to complete surveys.	Pain-pressure thresholds were tested using pressure algometry at 10 sites distributed across the amputated limb, sound limb, and upper limbs.	Data was pulled from a national insurance-based claims database to evaluate associations between pain reporting and demographic and comorbid risk factors.
Outcomes	PLP and RLP presence and severity (per the NPRS)	Groningen Questionnaire Problems after (Leg/Arm) Amputation	Prevalence of pain by site, number of sites, and distribution.	Patient-Reported Outcome Measurement System and NPRS for RLP and PLP	PLP and RLP presence and severity (per the NPRS), pain- pressure thresholds	Incidence of postoperative neuroma, neuralgia, and PLP
Key Findings	Male sex was associated with higher prevalence of PLP (p<0.05); this did not hold after controlling for amputation cause. There were no significant differences in RLP prevalence or in PLP or RLP severity, but females reported greater (p<0.05) overall pain intensity.	Female sex (OR: 8.06; 95% CI: 2.05-31.25), upper limb loss (OR: 7.04; 95% CI: 1.14- 43.48), and shorter time since amputation (OR: 1.90; 95% CI: 1.24-2.92) were associated with greater risk of PLP.	Female sex was associated with higher prevalence of RLP, low back pain, and contralateral hip and knee pain. Females had higher odds (OR: 2.40; 95% CI: 1.40-4.12) of reporting multisite pain.	Female sex was associated with increased risk of PLP (OR: 1.63; 95% CI: 1.22- 2.18) and RLP (OR: 1.37; 95% CI: 1.03-1.83). Females, on average, reported higher pain intensity than males.	84.7% of individuals with pain reported PLP; 44.1% had co-occurring PLP and RLP. Females had significantly lower pain-pressure threshold than males at all tested sites.	Overall prevalence of nerve-related pain in the first year was 14.3% (phantom limb pain: 10.9%; neuralgia: 4.4%; neuromas: 0.4%). Male sex was stated to be associated with increased incidence of nerve-related pain and/or PLP 1-year after amputation (OR: 0.86; 95% CI: 0.81-0.91).
Study Limitations	This study's generalizability is limited by low response rate (56.2%), low racial diversity, and a relatively low proportion of female participants.	This study's generalizability was limited by low retention of participants at follow- up (62%) and lack of consideration of existing pharmacological intervention.	Secondary analysis of existing data precludes <i>a</i> <i>priori</i> power analysis. Data reported was a mix of verbal and written surveys, which may affect reliability of pain reporting.	Mixed-methods data collection (some onsite with study coordinator, some from home) may affect how pain was reported. Sample was predominantly white and male, limiting generalizability.	Adults with lower-limb loss had low pain intensity (i.e., median worst pain in past 24 hours was 4/10 for RLP and PLP), limiting generalizability to individuals with more severe pain. Exclusion criteria (e.g., no wounds) may underestimate point prevalence of pain.	Incidence of neuropathic pain may be under-estimated given use of ICD-10 codes from insurance claims. Pain- related codes may not have been added on claims if code(s) were not deemed relevant to provided services (e.g., surgical care, prosthetic care). Interpretation of results dubious given statement of increased risk with male sex but report of odds ratio <1.

Abbreviations: LL= limb loss; PLP=phantom limb pain; RLP=residual limb pain; NPRS=Numeric Pain Rating Scale; OR=odds ratio; CI=confidence interval; ICD=International Classification of Diseases * Data reported as median (25th percentile, 75th percentile) rather than mean ± standard deviation